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CoastObs Project  

CoastObs is an EU H2020 funded project that aims at using satellite remote 

sensing to monitor coastal water environments and to develop a user-

relevant platform that can offer validated products to users including 

monitoring of seagrass and macroalgae, phytoplankton size classes, primary 

production, and harmful algae as well as higher level products such as 

indicators and integration with predictive models. 

To fulfil this mission, we are in dialogue with users from various sectors 

including dredging companies, aquaculture businesses, national 

monitoring institutes, among others, in order to create tailored products 

at highly reduced costs per user that stick to their requirements. 

 

With the synergistic use of Sentinel-3 and Sentinel-2, CoastObs aims at 

contributing to the sustainability of the Copernicus program and assisting 

in implementing and further fine-tuning of European Water Quality 

related directive. 
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1 Summary 
Rationale: 

The aim of the H2020 CoastObs project is to develop a commercial service platform for user-

relevant coastal water monitoring and environmental reporting based on validated Earth 

Observation (EO) and in situ optical data.   As part of WP3, several innovative and higher level 

EO products were developed for use in coastal waters, primarily using the European Space 

Agency (ESA) Sentinel-2 and -3 satellite instruments (Multispectral Instrument (MSI) and Ocean 

and Land Colour Instrument (OLCI), respectively).  This new generation of ESA Sentinel satellites 

provides improved spectral, temporal and spatial capabilities to monitor the coastal region 

from space.  These data provide the opportunity to develop a products to monitor coastal 

waters that can be included in this service. 

However, substantial validation is required in order to define the accuracy of the CoastObs 

products.  Product validation will ensure each product is robust and fit-for-purpose.  Clear and 

transparent error metrics for each product will also provide users with confidence in the 

CoastObs products and is therefore a fundamental process in advance of the service 

implementation.  Therefore, several dedicated field campaigns were conducted in the coastal 

waters of France, Italy, the Netherlands and Spain during 2018-2019, where biogeochemical, 

radiometric and optical measurements were made in order to develop and test the CoastObs 

products.  Thus, the results of these validation efforts will be presented in this deliverable for 

each CoastObs product and region, implementing the methods and error metrics as defined in 

the D2.4 Validation Plan.  

  

Objective: 

This deliverable presents the validation results for all CoastObs products, by region, satellite 

sensor and/or method.  Both “basic” and innovative product validation are included in this 

deliverable, however the data and methods for products, if not described here, are included in 

the relevant deliverables for Product Documentation (D3.3, D3.4,D3.5 and D3.6) and Higher 

Level Products (D3.8).  Additionally, as the 2019 field season has recently concluded, this 

deliverable includes validation results for the 2018 field campaigns, unless otherwise specified. 
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2 Introduction 
The aim of the H2020 CoastObs project is to develop a commercial service platform for user-

relevant coastal water monitoring and environmental reporting based on validated Earth 

Observation (EO) and in situ optical data.   As part of WP3, several innovative and higher level 

EO products were developed for use in coastal waters, primarily using the European Space 

Agency (ESA) Sentinel-2 and -3 satellite instruments (Multispectral Instrument (MSI) and Ocean 

and Land Colour Instrument (OLCI), respectively).  This new generation of ESA Sentinel satellites 

provides improved spectral, temporal and spatial capabilities to monitor the coastal region 

from space.  It is in this context that the CoastObs products were developed, in order to make 

the most of freely accessible EO data to develop a coastal monitoring service.  

Dedicated field campaigns were conducted in the coastal waters of France, Italy, the 

Netherlands and Spain in 2018-2019, during which biogeochemical, radiometric and optical 

measurements were made in order to test and develop these products for use in the CoastObs 

service.  Over 680 stations were sampled over all regions during the course of these campaigns, 

producing a vast validation dataset for product testing and development of CoastObs products.  

As the 2019 field season has only just finished, this deliverable will focus on the validation 

results for the 2018 field campaigns only, unless otherwise specified. 

These novel CoastObs products require validation in order to ensure they are robust and fit-

for-purpose.  Validation can be defined as the process of assessing the reliability of the data 

products derived from a system output with independent means (Kleywegt, 2007).  The 

validation methods for use with quantitative and qualitative data were described in detail in 

D2.4 Validation Plan, and summarised in Section 2.1.  Clear and transparent error metrics for 

each product will provide users with confidence in the CoastObs products and is therefore a 

fundamental component of the product development stage.  It is of great importance to 

understand the errors associated with the measurements and resulting products first, in order 

to ensure that the products can then be implemented reliably in the service.   

This deliverable presents the validation results for all CoastObs products, by region, satellite 

sensor and/or method.  First, the “basic” products are demonstrated, including satellite remote 

sensing reflectance (Rrs(λ); i.e. atmospheric correction validation), chlorophyll-a (Chl-a; a proxy 

for total phytoplankton biomass), total suspended matter (TSM) or suspended particulate 

matter (SPM), turbidity, sea surface temperature (SST), euphotic depth (Zeu; the depth at which 

photosynthetically available radiation (PAR) is 1% of the surface PAR), and daily irradiance or 

PAR (E0).  These basic CoastObs products are the best-performing algorithms for each region, 

derived either from existing or re-tuned algorithms, and are the building blocks for the 

innovative and higher level products.  



  
 
 

 

 20 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

Secondly, we present validation of the CoastObs innovative products in this deliverable, 

building on the robust basic products.  These include seagrass and macroalgae (SMA), 

phytoplankton size classes (PSC), primary productivity (PP) and harmful algal blooms (HABs).  

The data and methods for these products were described in the relevant Product 

Documentations (D3.3, D3.4, D3.5 and D3.6), however any details not included in these 

previous deliverables is presented here.  The validation results for the innovative products are 

shown by region or method.  Lastly, validation for the higher level product mussel culture 

potential is presented, however all higher level products are described in detail elsewhere (D3.8 

Higher Level Products Report). 

2.1 Product Validation Method 
The error metrics for product validation have been described in detail in the preceding 

CoastObs deliverable, D2.4 Validation Plan.  As a single index is unlikely to adequately describe 

model performance, a suite of complementary measures is used to report accuracy of each 

product.   

The Validation Plan outlined the error measures for validation of quantitative data as follows: 

 Intercept (b) and slope (a) of a regression line of a scatterplot of EO retrieved data vs. 

in situ or laboratory measured data (with a 1:1 prediction line) 

 Root mean square error (RMSE) 

 Mean absolute error (MAE) 

 Bias 

Additionally, the Validation Plan outlined the key methods for validation of qualitative data as 

follows: 

 True false rate (TFR) 

 True positive rate (TPR) 

 Overall accuracy (OA) 

 Kappa statistic (K) 

Throughout this Validation Report, the appropriate metrics have been used to assess the best 

performing products.  We have thus aimed to achieve product accuracy to the satisfaction of 

the users and their requirements. 
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2.2 Summary of CoastObs validation campaigns  
A summary of the dedicated CoastObs field campaigns from 2018-2019 is provided in Table 1, 

with regional maps of 2018-2019 sampling stations presented in Figure 1-Figure 5. 

 

Table 1 – Summary of dedicated CoastObs field campaign efforts for product validation 

 

Country Region Survey Dates Number of 

Stations 

Biogeochemical 

data collected 

IOPs / AOPs 

collected 

France Bourgneuf 

Bay 

14 and 26 

September 

2018 

20 for 

algorithm 

calibration; 

54 for 

product 

validation 

Percent cover 

and biomass of 

seagrass  

R (ASD) 

Bourgneuf 

Bay 

01 and 13 

September 

2019 

59 for 

algorithm 

validation 

Percent cover 

and biomass of 

seagrass 

R (ASD) 

Marenne 

Oléron 

03 

September 

2019 

28 for 

algorithm 

validation 

Percent cover 

of seagrass 

R (ASD) 

Glénan 

Archipelago 

08 to 11 July 

2019 

38 for Rrs 

validation; 

210 for 

product 

validation 

Bottom depth 

and bottom 

type percent   

cover 

Rrs (ASD) 

Italy Venice 

Lagoon & 

Adriatic Sea 

14 campaigns 

(January-May 

2019) 

120 SPM, SPIM, 

SPOM, 

Turbidity, 

Secchi depth, 

CTD profiles 

Rrs(WISP-3) 

Netherlands Wadden Sea / 

NIOZ Jetty 

2015-2017 

 

1 Rrs(Trios) Rrs (TriOS, WISP-

3), IOPs (AC-S, 

BB3) 
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Country Region Survey Dates Number of 

Stations 

Biogeochemical 

data collected 

IOPs / AOPs 

collected 

Wadden Sea / 

Eemshaven 

pole 

2017 1 Chl-a, TSM Rrs (TriOS, WISP-

3), IOPs (AC-S, 

BB3) 

Wadden Sea 2017 7-24  SST  

Spain Ria de Vigo May -June 

2018 

73 Chl-a, TSM, 

CDOM, HPLC, 

pabs, 

fractionated 

Chl-a, 

fractionated 

pabs,  

Rrs (TriOS, WISP-

3), IOPs (AC-S, 

BB3) 

 3-21 June 

2019 

53 Chl-a, TSM, 

CDOM, HPLC, 

pabs, 

fractionated 

Chl-a, 

FastOcean FLCs 

Rrs (TriOS, WISP-

3), IOPs (AC-S, 

BB3) 
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Figure 1 - Locations of CoastObs field campaigns from 2018-2019 

 

 

Figure 2-  Map of 2018-2019 CoastObs stations in Venice Lagoon and Adriatic Sea, Italy  
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Figure 3-  Map of 2018-2019 CoastObs stations in Ria de Vigo, Spain  

 

 

Figure 4-  Map of 2018-2019 CoastObs stations in (a) Wadden Sea and (b) Oosterschelde, 

Netherlands  
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Figure 5-  Map of 2018-2019 CoastObs stations in (a) Borgenouf bay and (b) Glenan 

Archipelago, France  

 

3 CoastObs Product Validation (2018) 
This Validation Report will cover primarily product validation results from 2018 field campaign 

data, as at this stage these data have been processed completely.  However, the 2019 field data 

has been used on occasion where there were no data collected for 2018 (e.g. Primary 

Production).  Validation of basic products are presented first, including remote sensing 

reflectance, chlorophyll-a (Chl-a), total suspended matter (TSM) and turbidity, sea surface 

temperature (SST), euphotic depth (Zeu) and daily irradiance (E0).  This is followed by validation 

of the innovative and supplementary products, including Seagrass and Macro-algae (SMA), 

phytoplankton size classes (PSC), Primary Production (PP) and Harmful Algal Blooms (HABs).  

These products are described in detail in the relevant product documentation (D3.3, D3.4, D3.5 

and D3.6), however any addition or change to the method for these products is outlined here.  

Finally, we present validation of the higher level CoastObs products, which are also described 

in further detail in the previous deliverable (D3.8). 

3.1 Basic Products 

3.1.1 Remote sensing reflectance 

In order to produce robust CoastObs products, the remote sensing reflectance (Rrs(λ)) retrieved 

from atmospheric correction of the satellite data must first be validated.  
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Image preprocessing 

The Sentinel-3 OLCI archive was processed using the Level 1 data available at Eumetsat's 

website. The first step was to remove cloudy, hazy, land and invalid pixels. This was done using 

the IdePix algorithm available at the SNAP 6.0 software (Lebreton et al., 2016). Finally, the valid 

pixels would be atmospherically corrected using corresponding processors. At this point, the 

processing results in 300 meter spatial resolution, atmospherically corrected flagged data of 

water leaving radiance reflectance (Rrs). No further processing took place, as we were 

interested to assess the quality of the AC comparing with available in situ datasets.  

The Sentinel-2 MSI imagery was pre-processed in a similar way as the Sentinel-3 OLCI data. 

Atmospheric corrections 

Several atmospheric corrections were tested for both Sentinel-2 MSI and Sentinel-3 OLCI (Table 

2 and Table 3), and the validation results for these are presented here. For further detail, please 

see associated references provided in the tables.     

Table 2 – List of Sentinel-2 atmospheric corrections tested 

Sentinel-2    

Atmospheric 

Correction 
Reference 

Details Link 

ACOLITE  

Vanhellemont 

(2019); 

Vanhellemont and 

Ruddick (2018), 

Vanhellemont and 

Ruddick (2016; 

2015; 2014) 

v20180925 https://odnature.naturalsciences.be/remsem/ 

software-and-data/acolite    

Case 2 

Regional 

CoastColour 

(C2RCC) 

Doerffer and 

Schiller (2008); 

Brockmann and 

Doerffer (2016) 

v1.0 https://www.brockmann-

consult.de/portfolio/water-quality-from-

space/  

Case-2 

Extreme 

Waters 

(C2X) 

Nechad, et al. 

(2017) 

v1.0 http://www.brockmann-consult.de/c2x/  

Image 

correction 

for 

atmospheric 

De Keukelaere et al. 

(2018); Sterckx et al 

(2015) 

v 1.0 https://eo.belspo.be/en/news/icor-

atmospheric-image-correction-made-

accessible  

https://odnature.naturalsciences.be/remsem/%20software-and-data/acolite
https://odnature.naturalsciences.be/remsem/%20software-and-data/acolite
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
http://www.brockmann-consult.de/c2x/
https://eo.belspo.be/en/news/icor-atmospheric-image-correction-made-accessible
https://eo.belspo.be/en/news/icor-atmospheric-image-correction-made-accessible
https://eo.belspo.be/en/news/icor-atmospheric-image-correction-made-accessible
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Sentinel-2    

Atmospheric 

Correction 
Reference 

Details Link 

effects 

(iCOR)  

Polymer  
Steinmetz et al 

(2011) 

v4.8 https://www.hygeos.com/polymer  

 

Table 3 – List of Sentinel-3 atmospheric corrections tested 

Sentinel-3   

Atmospheric 

Correction 
Reference 

Details Link 

Augmented 

Case 2 

Regional 

CoastColour 

(augC2RCC) 

Doerffer and 

Schiller (2008); 

Brockmann and 

Doerffer (2016); 

Same source, just 

with a different 

training set for 

the NN 

V1.0 https://www.brockmann-

consult.de/portfolio/water-quality-from-

space/  

Case 2 

Regional 

CoastColour 

(C2RCC) 

Doerffer and 

Schiller (2008); 

Brockmann and 

Doerffer (2016) 

V1.0 https://www.brockmann-

consult.de/portfolio/water-quality-from-

space/  

Polymer  
Steinmetz et al 

(2011) 

v4.9 (2018 data) 

 

https://www.hygeos.com/polymer 

V4.10 (2019 

data) 

WFR 

ESA OLCI Level-2 

Full Resolution 

(OL_2_WRF) 

Product 

standard product 

 

https://sentinel.esa.int/web/sentinel/user-

guides/sentinel-3-olci/product-types/level-

2-water  

 

https://www.hygeos.com/polymer
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.brockmann-consult.de/portfolio/water-quality-from-space/
https://www.hygeos.com/polymer
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water
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Overall AC algorithm performance 

The performance of atmospheric corrections (ACs) for every region are summarized in Table 4. 

In general, the best performing algorithms vary by region and satellite sensor, which indicates 

the need for testing atmospheric correction algorithms regionally. The best performing 

algorithm for each dataset and region was used to produce the satellite Rrs(λ) data, which were 

inputs for the corresponding downstream products. We note that further validation and 

analyses are required by acquiring more in situ data to evaluate and demonstrate the 

robustness of a chosen AC over regions and time.  For further validation results, please see the 

following sub-sections. 

 

Table 4 Performance of atmospheric correction algorithms over studied regions 

Algorithm performance  

Country Regions Time In situ 

radiometer  

Satellite 

data 

AC 

algorithm(s) 

evaluated  

Best 

performing 

AC 

algorithm 

N 

Italy Venice 

Lagoon 

2019 WISP-3 Sentinel-

2 MSI 

ACOLITE ACOLITE 104 

Spain Ria de Vigo 2018 WISP-3 Sentinel-

2 MSI 

ACOLITE, 

C2RCC, C2X, 

iCor, Polymer 

C2RCC, C2X 32 

Sentinel-

3 OLCI 

augC2RCC, 

C2RCC, 

Polymer, 

WFR 

Polymer 32 

Italy and 

Spain 

Venice 

Lagoon,  and 

Ria de Vigo 

2018 TriOS 

RAMSES 

Sentinel-

2 MSI 

ACOLITE, 

C2RCC, iCOR, 

Polymer, C2X 

C2RCC, 

Polymer 

42 

Sentinel-

3 OLCI 

C2RCC,  

Polymer 

C2RCC 44 

Netherlands NIOZ Jetty 

and 

Eemshaven 

pole, 

Wadden Sea 

2015 

- 

2017 

TriOS 

RAMSES 

Sentinel-

2 MSI 

ACOLITE, 

C2RCC, C2X 

C2X 13 

Sentinel-

3 OLCI 

ACOLITE, 

augC2RCC, 

C2RCC 

augC2RCC 20 
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Algorithm performance  

Country Regions Time In situ 

radiometer  

Satellite 

data 

AC 

algorithm(s) 

evaluated  

Best 

performing 

AC 

algorithm 

N 

France Bourgneuf 

Bay 

(intertidal 

areas) 

2018 

- 

2019 

ASD Sentinel-

2 MSI 

Sen2Cor Sen2Cor 45 

Glénan 

archipelago 

(shallow 

waters) 

2019 TriOS 

RAMSES 

and ASD 

Sentinel-

2 MSI 

ACOLITE, 

C2RCC, 

Polymer 

Polymer 38 

 

3.1.1.1 Validation with WISP-3 

The WISP-3 handheld radiometer (Water Insight) was one instrument used to collect in situ 

radiometry for validation of satellite Rrs.  WISP-3 radiance and irradiance spectra are processed 

according to the following equation to obtain subsurface irradiance reflectance (R(0-)): 

R(0-) = Q × f (Lu – rsky × Ld)/Ed          Equation 1 

where Q denotes the conversion coefficient for Lwu (upwelling radiance below water) to Ewu 

(upwelling irradiance below water), f is the conversion constant of Lu (upwelling radiance above 

water) to Lwu (upwelling radiance below water), rsky is the radiance of skylight at zenith angle of 

420°. 

Rrs is calculated from the WISP by Water Insight using the following equation: 

𝑅𝑟𝑠(𝜆) =
𝐿𝑡(𝜆)−𝜌𝑠𝐿𝑠(𝜆)

𝐸𝑠(𝜆)
              Equation 2 

Where Lt is the spectral water-leaving radiance, Ls is the sky radiance, Es is the downwelling 

irradiance, and ρs is the fraction of Ls reflected specularly on the water surface.  ρ is taken as a 

constant (ρ= 0.028). 

Italy 

Sentinel-2 MSI 

Intensive and expeditive fieldworks were undertaken in the Lagoon of Venice (LV) to gather 

data for the purpose of validating CoastObs standard products, including water reflectance and 

water-quality parameters (turbidity and SPM).  
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Starting from January 2019 to May 2019, 14 campaigns were carried out, synchronous with the 

passage of Landsat 8 (L8) and Sentinel-2 (S2) satellites. The measurement stations were located 

in the area of the Lido tidal mouth and in the central sector of the lagoon. A total of 120 stations 

were visited with a maximum time difference of 1 h from the satellite overpasses. Two 

campaigns were excluded from the validation analysis, because of atmospheric conditions 

(partly cloudy sky). At each station, above water remote sensing reflectances were measured 

with the WISP-3 spectroradiometer (Water Insight).  

The list of campaigns carried out is summarized in Table 5. Figure 6 show the map and the 

coordinates of the stations investigated. 

 

Table 5– Expeditive fieldworks carried out in the LV to validate CoastObs standard 

products 

 

Date Site Number of stations S2A S2B L8 Sky conditions 

24/01/2019 Lido inlet 6 (ST1-ST6) X  X Clear Sky 

05/02/2019 Lido inlet 7 (ST1-ST7)  X  Clear Sky 

08/02/2019 Lido inlet 7 (ST1-ST7)  X  Clear Sky 

15/02/2019 Lido inlet 7 (ST1-ST7)  X  Partly Cloudy 

25/02/2019 Lido inlet 7 (ST1-ST7)  X X Clear Sky 

28/02/2019 Lido inlet 7 (ST1-ST7)  X  Clear Sky 

20/03/2019 Central sector of LV 6 (ST1-ST6)  X  Clear Sky 

22/03/2019 Lido inlet 7 (ST1-ST7) X  X Clear Sky 

29/03/2019 Lido inlet 7 (ST1-ST7)   X Clear Sky 

01/04/2019 Lido inlet 7 (ST1-ST7) X   Clear Sky 

16/04/2019 Lido inlet 8 (ST1-ST8)  X  Clear Sky 

19/04/2019 Lido inlet 8 (ST1-ST8)  X  Clear Sky 

24/05/2019 Lido inlet 8 (ST1-ST8) X   Partly Cloudy 

31/05/2019 Lido inlet 8 (ST1-ST8) X   Clear Sky 
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Figure 6-  Study area with location of fieldwork activities carried out from January to 

May 2019 (red dots: measurement stations on 20th March 2019 in the central sector of 

the LV; yellow dots: revisited stations at the Lido inlet). 

L8 and S2 data were processed with the same methodology. Briefly, L8 imagery, obtained from 

USGS, and S2 data, downloaded from Copernicus Open Access Hub, were radiometrically 

calibrated according to Pahlevan et al. (2014) and Pahlevan et al. (2019), respectively. The 

vicarious calibration, reported in Pahlevan et al. (2014) and Pahlevan et al. (2019), considering 

the differences in their spectral and spatial sampling, is important for combining Sentinel-2 and 

Landsat data products and for generating consistent data for global water quality monitoring. 

TOA reflectances were atmospherically corrected with ACOLITE (Atmospheric Correction for 

OLI ‘lite’), an automatic method for L8 OLI atmospheric correction in coastal and inland waters 

(Vanhellemont and Ruddick, 2014, 2015) and adapted to Sentinel-2 data (Vanhellemont and 

Ruddick, 2016). ACOLITE was run selecting the "dark spectrum fitting" approach (Vanhellemont 

and Ruddick, 2018; Vanhellemont, 2019). This approach uses multiple dark targets in the 

subscene to construct a “dark spectrum” which is used to estimate the atmospheric path 

reflectance (ρpath) according to the best fitting aerosol model. ACOLITE represents an unified 

processor publicly available for water applications of multi-sensor long-term archive and was 

originally developed for remote sensing of water turbidity in turbid and extremely turbid waters 

(Vanhellemont and Ruddick, 2016) using Landsat and Sentinel-2 type sensors. It was 

successfully applied in turbid environments, thus it was also selected as the AC method for the 

present intensive and expeditive validation activities, considering that the optical water quality 

was influenced mainly by suspended sediments. 
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In situ WISP-3 data were used to assess the accuracy of ACOLITE -derived Rrs from synchronous 

L8 and S2 imagery. During fieldwork activities, we performed about 10 measurements for each 

station in a period of 1-2 minutes. WISP-3 data were upload on WISPweb and a first data check 

was made before saving the measurements on the website. A total of 104 match-ups (28 with 

S2A, 49 with S2B and 27 with L8, 20 of those with both S2 and L8) between satellite and in situ 

data collection were available by considering a maximum time difference of 1 h. Figure 7 shows 

the scatter plots of the L8 and S2A and B derived Rrs versus in situ WISP-3 measurements. The 

correlations were statistically significant with better performances for the Green and Red 

bands, which have generally the highest reflectance range, and which are of general of interest 

to retrieve turbidity at low to moderate turbidities. For the three sensors and for all the bands, 

an overestimation is observable when Rrs is medium-low, while it is underestimated for Rrs 

higher values. See Table 6 for the complete statistics of fitting.  

 

Figure 7 -  Validation scatterplots for Rrs CoastObs product, indicating R2 and linear 

regression fit. 
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Table 6 – Error metrics for Rrs CoastObs product 

 

Product R2 slope RMSE Bias MAE N 

LV/ Rrs 443 0.574121 0.467627 0.004527 0.001664 0.003912 104 

LV/ Rrs 490 0.764604 0.564954 0.00431 0.000959 0.00365 104 

LV/ Rrs 560 0.788292 0.552028 0.005198 -0.00074 0.003616 104 

LV/ Rrs 665 0.849082 0.663042 0.002855 0.001536 0.002492 104 

 

Spain 

Valid match-ups for validating Rrs from Sentinel-3 images using simulated Rrs spectra from in 

situ WISP-3 measurements were obtained from 32 sampling stations during 6 days in July 2018, 

within the dedicated CoastObs campaign conducted in the Ria de Vigo (Galicia).  

Sentinel-3 OLCI 

Figure 8 shows the relationship between in situ reflectances from WISP-3 and Rrs derived from 

the four atmospheric correction (AC) methods proposed for Sentinel-3. A linear trend can be 

seen in all the methods, with determination coefficients (R2) ranging from 0.48 to 0.57, as well 

as generalized negative deviations from the identity line indicating that they tend to 

underestimate the Rrs.  

Table 7 shows the errors metrics comparing in situ WISP-3 and Sentinel-3 Rrs derived from the 

four AC methods. According to these results, Polymer outperformed other the AC methods, 

showing a better fitting (higher R2) and a lower error (lower RMSE and MAE). The tendency to 

understimate observed in Figure 7 is confirmed by negative bias values in all the methods.  
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Figure 8 -  Validation scatterplots between in situ Rrs from WISP-3 and Rrs from Sentinel-

3 using: a) Polymer; b) C2RCC; c)augC2RCC; d) WFR. 

 

Table 7 – Error metrics comparing in situ Rrs from WISP-3 and Sentinel-3 using different 

atmospheric correction algorithms. 

 

AC R2 slope RMSE Bias MAE 

Polymer 0.57 0.91 0.44 -0.26 0.32 

C2RCC 0.50 1.40 0.99 -0.79 0.82 

augC2RCC 0.48 1.18 0.81 -0.63 0.65 

WFR 0.51 1.11 0.60 -0.39 0.45 

 

Sentinel-2 MSI 

Five AC methods for Sentinel-2 were also tested using WISP-3 in situ measurements from 32 

sampling stations during four days in July 2018 within the CoastObs campaign in the Ria de Vigo 

(Galicia).  
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Table 8 shows the errors metrics comparing in situ WISP-3 and Sentinel-2 Rrs derived from the 

five AC methods. Figure 8 shows the relationship between in situ reflectances from WISP-3 and 

Rrs derived from Sentinel-2 using only the four best AC methods.  

 

Figure 9-  Validation scatterplots between in situ Rrs from WISP-3 and Rrs from Sentinel-

3 using: a) ACOLITE; b) C2RCC; c)C2X; d) Polymer. 

Table 8 - Error metrics comparing in situ Rrs from WISP-3 and Sentinel-2 using different 

atmospheric correction algorithms. 

 

AC R2 slope RMSE Bias MAE 

ACOLITE 0.55 0.22 0.48 0.33 0.36 

C2RCC 0.70 1.05 0.70 -0.62 0.62 

C2X 0.70 1.14 0.64 -0.54 0.54 

Polymer 0.58 1.01 0.52 -0.35 0.36 

iCOR 0.01 -0.06 0.91 0.69 0.76 

 

Results from iCOR are remarkably poorer than the other AC methods, which show linear fittings 

with positive correlations (R2 ranging from 0.55 to 0.70). While ACOLITE tends to overestimate 
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with low Rrs values (bias = 0.33), the other three models in Figure 9 show negative deviations 

with respect to the identity line and negative bias values.  

Although C2RCC and C2X outperform Polymer in terms of correlation (higher R2 values), these 

methods show also higher error values (higher RMSE and MAE) and higher deviations from the 

identity line (slopes far from one, lower bias values). As a consequence, further analysis would 

be required by adding the 2019 dataset to make a decision about the best performing AC 

method for Sentinel-2.   

3.1.1.2 Validation with TriOS RAMSES 

In situ reflectance was measured also measured during the Venice and Vigo 2018-2019 

campaigns using a set of TriOS RAMSES hyperspectral radiometers.  For the TriOS data, Rrs was 

processed from the measured irradiance and radiance spectra according to the following 

equation: 

𝑅𝑟𝑠(𝜆) =
𝐿𝑡(𝜆)−𝜌𝑠𝐿𝑠(𝜆)

𝐸𝑠(𝜆)
− 𝜀       Equation 3 

 

Where Lt is the spectral water-leaving radiance, Ls is the sky radiance, Es is the downwelling 

irradiance, and ρs is the fraction of Ls reflected specularly on the water surface.  ρs is obtained 

using the procedure in Simis and Olsson (2013), a spectral optimisation procedure to minimise 

the presence of features in Rrs associated with atmospheric absorption. 

Spectra resulting from this procedure may have a spectrally neutral offset, ε (Qin et al. 2017). 

The offset is calculated using the near infrared reflectance where the absorption by pure water 

is assumed to dominate the shape of Rrs. ε is calculated from the ratio of bands at 779 and 865 

nm as: 

𝜀 =
(𝑅𝑟𝑠(865) 𝑎𝑤(865))−𝑅𝑟𝑠(779)

 𝑎𝑤(865)− 𝑎𝑤(779)
       Equation 4 

 

where aw(λ) is the absorption by pure water, as in Roettgers et al. (2011). 

Italy and Spain 

For the 2018 Venice and Vigo campaigns, reflectance data were collected in situ using the TriOS 

RAMSES radiometers.  The results of these are presented for the two datasets together, for 

both Sentinel-2 and -3 reflectances.   

Sentinel-2 MSI 

The scatterplots at each Sentinel-2 band for the four atmospheric corrections (ACs) tested are 

shown in Figure 10 to Figure 13.  The best performing ACs for Sentinel-2 were Polymer and 
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C2RCC, and the validation error metrics for Rrs are presented in Figure 14 -  Validation 

scatterplots for Sentinel-2 MSI iCOR atmospheric correction, indicating R2 and linear regression 

fit at each band (B4-B8A not shown due to zero values for all iCOR Rrs at these bands) 

 

Table 9 and Table 10, respectively.  These two ACs both outperformed iCOR, C2X and ACOLITE. 

C2RCC had higher errors than Polymer for the NIR bands (B6-B8A), however C2RCC 

outperformed Polymer in the Blue to NIR bands (B1-B5).    

 

 

Figure 10 -  Validation scatterplots for Sentinel-2 MSI C2RCC atmospheric correction, 

indicating R2 and linear regression fit at each band 
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Figure 11 -  Validation scatterplots for Sentinel-2 MSI Polymer atmospheric correction 

(v4.9), indicating R2 and linear regression fit at each band 

 

 

Figure 12 -  Validation scatterplots for Sentinel-2 MSI ACOLITE atmospheric correction, 

indicating R2 and linear regression fit at each band 

 

 

Figure 13 -  Validation scatterplots for Sentinel-2 MSI C2X atmospheric correction, 

indicating R2 and linear regression fit at each band 
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Figure 14 -  Validation scatterplots for Sentinel-2 MSI iCOR atmospheric correction, 

indicating R2 and linear regression fit at each band (B4-B8A not shown due to zero 

values for all iCOR Rrs at these bands) 

 

Table 9 – Error metrics for Sentinel-2 MSI Polymer atmospheric correction at each band, 

for the combined Venice and Vigo 2018 datasets (n=42) 

        

S2 Band 
Band Centre 

(nm) 
R2 slope RMSElog Biaslog MAElog 

MAPE 

(%) 

B1 443 0.0706 0.508 0.351 0.284 0.298 119% 

B2 490 0.380 0.845 0.309 0.250 0.264 97.4% 

B3 560 0.641 0.821 0.214 0.125 0.161 52.0% 

B4 665 0.475 0.818 0.341 0.132 0.257 106% 

B5 705 0.458 0.656 0.781 -0.475 0.587 110% 

B6 740 0.001 0.0260 0.941 0.341 0.573 9318% 

B7 783 0.0159 -0.134 0.925 0.698 0.753 2616% 

B8A 865 0.0623 0.104 0.899 0.186 0.603 641% 
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Table 10 – Error metrics for Sentinel-2 MSI C2RCC atmospheric correction at each band, 

for the combined Venice and Vigo 2018 datasets (n=49) 

        

S2 Band 
Band Centre 

(nm) 
R2 slope RMSElog Biaslog MAElog 

MAPE 

(%) 

B1 443 0.403 0.905 0.283 -0.0990 0.206 37.7% 

B2 490 0.436 0.862 0.280 -0.0755 0.193 35.5% 

B3 560 0.414 0.720 0.334 -0.146 0.253 44.3% 

B4 665 0.0757 0.221 0.446 -0.158 0.369 71.1% 

B5 705 0.00590 0.0481 0.521 -0.186 0.426 84.3% 

B6 740 0.0531 -0.0483 0.995 -0.0999 0.732 7858% 

B7 783 0.0743 -0.0524 0.886 -0.275 0.721 642% 

B8A 865 0.0907 -0.0226 1.09 -0.650 0.874 279% 

 

Sentinel-3A OLCI 

The best performing atmospheric correction for Sentinel-3A was C2RCC, with low errors and 

high R2 values where compared with TriOS in situ data (Figure 15). Polymer v4.9 also performed 

adequately, but with greater scatter and higher errors the C2RCC (Figure 16).  As with Sentinel-

2 data corrected with Polymer, there are also frequently negative Rrs values in the Red and NIR 

bands (e.g. Oa 11).  This is particularly an issue when using Polymer corrected data for deriving 

Chl-a concentrations, which often use a ratio of reflectance in the NIR to Red bands.  

Furthermore, none of the Polymer corrected Rrs values were significantly correlated with the in 

situ Rrs at any band (R2<0.121). 
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Figure 15 -  Validation scatterplots for Sentinel-3 OLCI C2RCC atmospheric correction, 

indicating R2 and linear regression fit at each band  (Bands Oa1-Oa12) 
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Figure 16 -  Validation scatterplots for Sentinel-3 OLCI Polymer v4.9 atmospheric 

correction, indicating R2 and linear regression fit at each band (Bands Oa1-Oa16) 

 

Table 11 – Error metrics for Sentinel-3A OLCI C2RCC atmospheric correction for bands 

Oa1-Oa12, for the combined Venice and Vigo 2018 datasets (n=44) 

        

S3A 

Band 

Band Centre 

(nm) 
R2 slope RMSElog Biaslog MAElog 

MAPE 

(%) 

Oa1 400 0.047 0.332 0.280 0.0784 0.201 65.8% 

Oa2 412.5 0.0895 0.457 0.250 0.0589 0.186 52.5% 

Oa3 442.5 0.276 0.706 0.226 0.0692 0.182 49.7% 

Oa4 490 0.414 0.746 0.192 0.0355 0.161 40.0% 

Oa5 510 0.532 0.772 0.175 -0.0367 0.135 28.0% 

Oa6 560 0.642 0.718 0.272 -0.187 0.206 33.9% 

Oa7 620 0.706 0.532 0.328 -0.203 0.247 41.6% 
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S3A 

Band 

Band Centre 

(nm) 
R2 slope RMSElog Biaslog MAElog 

MAPE 

(%) 

Oa8 665 0.718 0.439 0.372 -0.250 0.285 45.7% 

Oa9 673.75 0.714 0.438 0.389 -0.281 0.305 46.7% 

Oa10 681.25 0.711 0.436 0.425 -0.329 0.404 56.9% 

Oa11 708.75 0.761 0.428 0.466 -0.330 0.370 55.5% 

Oa12 753.75 0.293 0.209 0.605 -0.224 0.467 260% 

 

Table 12 – Error metrics for Sentinel-3A OLCI Polymer atmospheric correction for bands 

Oa1-Oa12, for the combined Venice and Vigo 2018 datasets (n=60) 

        

S3A 

Band 

Band Centre 

(nm) 
R2 slope RMSElog Biaslog MAElog 

MAPE 

(%) 

Oa1 400 0.0008 0.0658 0.342 0.179 0.275 110% 

Oa2 412.5 0.0002 0.0345 0.313 0.109 0.254 88.5% 

Oa3 442.5 0.0213 0.277 0.289 0.0650 0.231 73.4% 

Oa4 490 0.0643 0.253 0.258 -0.0443 0.207 48.6% 

Oa5 510 0.0923 0.249 0.256 -0.7323 0.202 43.3% 

Oa6 560 0.121 0.218 0.260 -0.0969 0.201 39.4% 

Oa7 620 0.0790 0.0926 0.330 -0.154 0.250 45.0% 

Oa8 665 0.0822 0.100 0.500 -0.373 0.399 82.0% 

Oa10 681.25 0.0293 0.0919 0.449 -0.300 0.336 84.7% 

Oa11 708.75 3 E-09 -4 E-05 0.915 -0.796 0.796 259% 

Oa12 753.75 0.0283 -0.0896 0.837 0.465 0.678 1835% 

Oa16 778.78 0.0507 -0.0771 0.735 0.189 0.597 1132% 
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Netherlands 

The in situ dataset we used to compare and assess the quality of the atmospheric correction 

consists of automated TriOS measurements of water, at the NIOZ jetty station on Texel (NJS) 

for the years 2015 to 2017 was kindly provided by NIOZ. The location of the jetty is Lat 

53.001707 and Lon 4.789045. The in situ measurements come from a Trios radiometer 

measuring reflectance on the water surface every 10 minutes. The time span for matchup used 

for both low and medium resolution is 120 minutes. The processing methods for these data can 

be found at the COLOURS documentation pages (accessed 18 September 2017). The data were 

used as provided without further processing. The TRIOS set-up at NIOZ consists of two sets of 

sensors, looking respectively to the SW and SE.  

We tested the following tools/approaches for atmospheric correction over the Netherlands 

coastal waters: 

1. ACOLITE (van Hellemont and Ruddick, 2014 ) 

2. C2X (http://www.brockmann-consult.de/c2x/index.php/home/) 

3. C2RCC (Brockmann et al., 2016) 

4. Polymer (Steinmetz et al., 2011) 

 

Sentinel-3 OLCI 

The satellite values were extracted from a pixel location close to the sensor but in open water 

to prevent mixed pixels (land and water in the same pixel) were used (see Figure 17). The in situ 

data for cloud free pixels were used with standard processing.  

For S3 we were able to collect 20 Match-up images over 2017. These were processed with the 

CoastColour neural network AC: C2RCC, which was trained using global coastal observations. 

For S3 it became clear that the net should be retrained to take into account some calibration 

deviations of the satellite sensor itself: this version is known as the alternative version of the 

C2RCC. Our statistical analyses were done using rather simple indicators because of the low 

number of match-up data. Both the neural networks show rather high R2 values and slopes 

close to 1 which is very encouraging. The alternative version performs better in the blue 

spectral range. The differences in the green, red and NIR range are negligible.  

 

http://melia.nioz.nl/phptoweb/colors/documentation/colours38.htm
http://melia.nioz.nl/phptoweb/colors/documentation/colours38.htm
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Figure 17 - Location of the pixel extraction location relative to the actual measurement 

station 

The results from three atmospheric correction (AC) methods, namely Polymer, C2RCC and 

alternative C2RCC (augC2RCC) were validated with radiometric field data matching satellite 

observations. These AC methods were applied to Sentinel-3-OLCI (S3) images over the Ems 

Dollard estuary and compared to matching field-spectra. Figure 18 and Table 13 show the 

validation results of these methods, Polymer validation results were excluded as it yielded a 

large MAPE error. 

 

Figure 18 - Validation results, expressed in MAPE (Mean Absolute Percentage Error) 

values, of atmospheric correction for Sentinel-3 
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Table 13 - Validation measures for the mean spectra for S3. 

   

  C2RCC Aug. C2RCC 

Slope 1.2 1.05 

Intercept [sr-1] -8E-3 -6E-3 

R2 0.86 0.92 

MAPE [%] 38.22 29.54 

  

Sentinel-2 MSI 

As above (S3 Matchup generation), the NIOZ jetty in situ spectral data were used, matching 

Sentinel-2 images that were cloud free near the location of the in situ station. However, 

Sentinel-2 has a higher spatial resolution (10-60 meters, depending on the spectral band) which 

let us extract the reflectance values closer to the actual station without risking a mixed pixel. 

For 2017, 16 cloud free dates were available for matchup. 

In total there were 13 matchups between S2 MSI observations and NIOZ Jetty in situ 

measurements: 7 for ACOLITE, 9 for C2X and 10 for C2RCC.  

 

 

Figure 19 - Validation results, expressed in MAPE values, of atmospheric correction for 

Sentinel-2 

Figure 20 - Validation measures for the mean spectra for S2. 

 ACOLITE C2X C2RCC 

Slope 0.54 0.9 0.69 

Intercept 

[sr-1] 

6E-06 -2E-3 -2E-3 

R2 0.99 0.98 0.98 

MAPE [%] 33.45 26.00 38.02 
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ACOLITE processor results  

The atmospherically corrected spectra from ACOLITE are averaged per band and plotted against 

the averaged in situ spectra in Figure 21. 

 

  
Figure 21 - ACOLITE: Validation result of 

mean spectra   

Figure 22 - ACOLITE: Validation result of 

actual spectra.  

ACOLITE spectra are underestimated (overcorrected), in particular for 490-705 nm bands. 

Bands of longer wavelength and the blue band at 443 have less overcorrection. The 

underestimation of ACOLITE is about 54% (the slope). The RMSRE is 29% for all bands. This 

RMSRE is for the mean values, the RMSRE for actual values is higher ~52%. Figure 22 shows the 

validation per band (coloured symbol).   

C2X processor results  

The validation results of C2X for the mean and actual values are shown in Figure 23 and Figure 

24 respectively. C2X results are much better than ACOLITE, for the mean values however. C2X 

slightly overcorrect (about 10%) the S2MSI spectra, with RMSRE of 26% (Figure 23).  

Figure 24 shows the validation with respect to actual spectra. The RMSRE is now 55% (compare 

to the 26% in Figure 23) with data points closer to the 1:1 line.  
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Figure 23 - C2X: Validation result of 

mean spectra.         

Figure 24 - C2X: Validation result of actual 

spectra. 

C2RCC processor results 

The validation results of the C2RCC processor for the mean and actual spectra are shown in 

Figure 25. The figure show that C2RCC performs worse than the C2X for the mean values and 

for the actual spectra. RMSRE 66% for C2RCC actual spectra whereas C2X has 55% RMSRE.  

 

Figure 25 - C2RCC: Validation result of actual spectra (left) and mean spectra (right) 
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Comparison of methods 

The mean values of the resulting spectra are plotted in Figure XX08. It is clear from Figure 26 

that only C2X falls within the variability range of the in situ measurements. In addition, the C2X 

mean spectrum has an apparent absorption feature at B4 = 665 nm.  

 

Figure 26 - Mean values of the resulting spectra. The dashed lines (u/l) are the upper and 

lower bounds of in situ spectra. Aco stands for ACOLITE.  

 

Table 14 summarizes the statistical measure of the mean spectra. Table 15 shows the same 

measures used in Table 14 but for the actual values.  Table 14, Table 15 and Figure 26 show 

that the best results were obtained from C2X.  

Table 14 - Validation measures for the mean spectra. 

 ACOLITE C2X C2RCC 

Slope 0.54 0.9 0.69 
Intercept [sr-1] 6E-06 -0.0023 -0.0019 
R2 0.99 0.98 0.98 
RMSE [%] 29 26 31 

 

Table 15 - Validation measures of actual spectra. 

 ACOLITE C2X C2RCC 

Slope 0.46 0.90 0.74 
Intercept [sr-1] 0.0008 -0.0023 -0.0023 
R2 0.67 0.76 0.78 
RMSE [%] 52 55 66 
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Summary of the results of the atmospheric correction of S2 MSI over water  

For the atmospheric correction of S2 there are several processors available. We tested C2RCC, 

C2X and ACOLITE. The tests were performed using the NIOZ Jetty TRIOS spectra for validation. 

Since S2 has a lower overpass frequency than S3, the number of match-ups is limited. (7-10 

matchups depending on the internal data flagging criteria in the processors). This number is 

rather low to perform a good validation but the differences were quite systematic.  

Validation was performed on the mean of all available spectra and on the single observations. 

For the means C2X performs really well with R2 and slope close to 1. For single observations the 

spread is larger but still the R2 is around 0.8 for C2X with a slope around 0.9. 

C2X was specifically trained on extreme case 2 waters as present in the Wadden Zee. This 

became evident from the validation results. ACOLITE severely underestimates the BOA 

spectrum. So C2X was selected for further processing. For validation of BOA reflectances, 

significantly more in situ measurements of reflectances are required, especially to demonstrate 

the robustness of a chosen AC over time and to evaluate possible improvements when the 

processors evolve. Such spectral data is also necessary to evaluate algorithms for water quality 

parameters calculations. 

3.1.1.3 Validation with ASD - Intertidal Areas 

France 

Sentinel-2 MSI 

Field radiometric validation measurements were performed on the 26 Sep 2018 and 01 Sep 

2019 in Bourgneuf Bay’s intertidal seagrass meadow, during concomitant Sentinel2 overpass 

and under clear sky. For these two dates, the matching Sentinel-2 data were downloaded from 

the European Space Agency (ESA) data portal (https://scihub.copernicus.eu). The performance 

of the ESA standard atmospheric correction (Sen2Cor processor algorithm, Main-Knorn et al., 

2017) was evaluated using in situ reflectance measurements over three types of targets: bare 

sediment, dense seagrass cover, and mixed patch of various substrates (including different 

cover types such as bare sediment, seagrass and macroalgae). We followed different strategies 

to obtain the best possible matchups over those targets. For the validation over bare sediment, 

given the spatial homogeneity of the area, only one pixel coinciding with the geolocation of the 

field measurement was extracted from the S2 images. For the validation over dense seagrass 

cover, the average of in situ samples taken over cores with 100% of seagrass cover was 

compared against the average of several pixels identified in the field as homogeneously and 

fully covered by seagrass. The validation over the mixed area was performed in 2018 only: 3 

pixels coinciding with the coordinates of 20 in situ samples were extracted and their average 

reflectance was calculated.  

https://scihub.copernicus.eu/
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Considering all bands together (443-865 nm), a good performance was observed with squared 

correlation coefficient (R2) of 0.97 and 0.98 in 2018 and 2019, respectively (Figure 27 and Table 

16). The performance of the ESA’s standard atmospheric correction was considered satisfactory 

for the study of intertidal seagrass meadows observed during low tide. The differences between 

in situ and satellite measurements may be due to differences between the instantaneous field-

of view of the satellite (IFOV) and the area measured by the field radiometer, to the small-scale 

spatial variability within a pixel, to some variables inherent to field acquisition (e.g., time lapse 

between measurements of the target and the white reference), and/or to atmospheric 

correction uncertainties. The difference between the 2018 and 2019 matchups suggest that 

the atmospheric concentration of aerosols was higher on the 01 Sep 2019 than on the 26 Sep 

2018, and that the reflectance retrieval in 2019 was subsequently underestimated.  

 

 

Figure 27 -  Validation scatterplot for Reflectance in intertidal areas in Bourgneuf bay 

during 2018 and 2019, indicating R2 and linear regression fit 
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Table 16 - Error metrics for Reflectance CoastObs product in Bourgneuf Bay over 

intertidal areas 

 

Product R2 slope RMSE_log Bias_log MAE_log N 

Bourgneuf Bay / 2018 0.97 1.02 0.063 0.038 0.045 27 

Bourgneuf Bay / 2019 0.98 0.72 0.092 -0.019 0.073 18 

 

3.1.1.4 Validation with TriOS RAMSES and ASD - Shallow Waters 

France 

Sentinel-2 MSI 

Field radiometric validation measurements were performed on the 9 and 11 July 2019 in the 

shallow waters of the Glénan archipelago, during two Sentinel-2 overpasses and under clear 

sky. In situ radiometric measurements passed through processing routines to remove sky and 

sunglint contribution to the above-surface Rrs. Hyperspectral in situ samples were resampled to 

the Sentinel-2 bands using the spectral response function of Sentinel-2A. For these dates, the 

matching Sentinel-2 data were downloaded from the European Space Agency (ESA) data portal 

(https://scihub.copernicus.eu) as L1C of processing. As the atmospheric correction of Sentinel2 

data in shallow waters is very challenging, the performance of the ESA standard correction was 

compared with three alternative corrections: Polymer (Steinmetz et al., 2011), the Case 2 

Regional Coast Colour for Complex waters (C2RCC, Brockmann et al., 2016), and ACOLITE 

(Vanhellemont and Ruddick, 2018 and Vanhellemont, 2019). In situ measurements were 

performed over variety of bottom types (seagrass, bare sand, brown and red macroalgae, and 

complex mixtures of the above-mentioned bottom types) in spatially homogeneous areas and 

within ±1hour respect to Sentinel-2 acquisition to avoid differences in tide level. Among the 

three atmospheric correction routines tested, Polymer outputs showed the best results and are 

presented here. Atmospheric correction showed the best performance in the bands in the blue 

and green, where the remote sensing signal is higher (Figure 28 and Table 17). On the contrary, 

bands in the red and NIR showed the highest errors. In these bands, light absorption by water 

molecules is high and the signal to noise ratio (SNR) tends to decrease, which can be associated 

to higher uncertainties at these wavelengths. Also, aerosol scattering is higher in the red and 

NIR regions and the atmosphere results more challenging to correct. 

https://scihub.copernicus.eu/
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Figure 28 -  Validation scatterplot for Rrs over shallow waters in the Glenan Archipelago 

during 2019, including bands 1 to 5 (443- 705 nm) 

 

Table 17 - Error metrics for Rrs CoastObs product in the Glenan Archipelago over shallow 

waters, computed independently for bands 1 to 5 (443 to 705 nm) 

 

Product R2 slope RMSE_log Bias_log MAE_log N 

Band 1 0.79 1.67 0.27 0.21 0.23 38 

Band 2 0.85 1.20 0.21 0.16 0.18 38 

Band 3 0.82 0.97 0.18 0.12 0.14 38 

Band 4 0.36 1.34 0.47 0.43 0.43 38 

Band 5 0.19 1.22 0.45 0.31 0.38 38 
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Figure 29 -  Example map of stations for validation of Rrs over shallow waters 

 

3.1.2 Chlorophyll-a (Chl-a) 

Chlorophyll-a (Chl-a) products were developed for Sentinel-2 and -3, using the best-performing 

atmospheric corrections. These validation results are presented by region below, describing the 

algorithms tested where relevent. Overall, the NIR/Red 2-band ratio algorithm (Gitelson et al., 

2011) and the Color Index algorithm (CI) (Hu et al., 2012) performed best in the Venice Lagoon 

and Adriatic Sea (Italy), the Gons et al. (2005) algorithm performed well in Wadden Sea 

(Netherlands), and the CI, the NDCI (Mishra and Mishra, 2012), and the Neural Network 

algorithms (Gonzalez Vilas et al., 2011) all achieved good performance for Ria de Vigo (Spain). 

More details about the algorithms and validation results are described below for each satellite 

sensor and region, with a summary of the best performing Chl-a algorithms presented in Table 

18. 
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Table 18 - Best-performing Chl-a algorithms by region 

Chl-a Algorithm performance 

Country Regions Time Satellite 

sensor  

Atmospheric 

Correction 

Best performing Chl-a 

algorithm 

Italy Venice 

Lagoon and 

the Adriatic 

Sea 

2018 S2 MSI Polymer v4.8 NIR/Red 2-band ratio 

(Gitelson et al., 2011) 

S3 OLCI C2RCC  CI (Hu et al., 2012) 

Spain Ria de Vigo 2018 S2 MSI Polymer v4.8 CI (Hu et al., 2012) 

S3 OLCI C2RCC NDCI (Mishra & Mishra, 

2012) 

2016-

2018 

S3 OLCI Polymer v4.8 Neural Network 

(González Vilas, 2011) 

Netherlands Eemshaven 2017-

2018 

S2 MSI 

S3 OLCI 

C2X 

augC2RCC 

Semi-analytical (Gons et 

al., 2005) 

Oosterschelde  2018 S3 OLCI augC2RCC conc_chl product 

Wadden Sea 2018 S3 OLCI augC2RCC 

 

3.1.2.1 Italy 

Sentinel-2 MSI 

A suite of empirical, semi-empirical and semi-analytical models for Chl-a retrieval from Sentinel-

2 MSI were tested using the Venice 2018 dataset.  Sentinel-2 data were atmospherically 

corrected with Polymer v4.8, as this model performed well (Section 3.1.1).  These included a 

near infrared (NIR) to red 2-band ratio (BR) empirical model (Gitelson and Kondratyev, 1991; 

Dall’Olmo et al., 2003; Moses et al, 2009; Gitelson et al., 2011), the Polymer log_Chl product 

(Park and Ruddick, 2005; Steinmetz, 2011), a 3-band empirical model (Moses et al., 2009; 

Gilerson et al., 2010), the Normalised Difference Chlorophyll Index (NDCI; Mishra and Mishra, 

2012), the NASA OC (Ocean Colour) 3-band algorithm (O’Reilly et al., 2000; OC3E), and the 

Colour Index (Hu et al., 2012). 

Of these, the best performing algorithm for the Venice 2018 dataset was the NIR/Red 2-band 

ratio, which was tuned and implemented for Sentinel-2 as follows: 

𝐶ℎ𝑙 − 𝑎 (𝑚𝑔 𝑚−3) = 𝑎 × [𝑅𝑟𝑠(705)/𝑅𝑟𝑠(665)] +  𝑏    Equation 5 

where a and b were tuned to the Venice 2018 dataset as 2.955 and 0.5215, respectively.   
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The validation scatterplots for all Chl-a algorithms tested are shown in Figure 30, and the error 

metrics are presented in Table 19.  We note that Sentinel-2 Chl-a did not perform as well as the 

Sentinel-3 Chl-a product for this region, however this may simply be a result of the small sample 

size for the 2018 Venice dataset (n=12). 

 

 

Figure 30 -  Validation scatterplots for Venice 2018 Sentinel-2 Chl-a (unit: mg/m3), 

indicating R2 and linear regression fits 

 

Table 19 - Error metrics for CoastObs Sentinel-2 Chl-a product (unit: mg/m3), Venice 

2018 dataset (n=12) 

       

Algorithm R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 

NIR/Red 2-band ratio 0.427 0.427 0.138 -0.017 0.104 26.7% 

Polymer log_Chl 0.228 1.009 0.367 -0.306 0.306 131% 

3-band empirical 0.058 0.058 0.161 -0.026 0.116 31.2% 

NDCI 0.374 2.969 0.272 -0.134 0.201 72.1% 
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Algorithm R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 

OC3E 0.550 3.843 0.468 -0.420 0.420 194.6% 

CI 0.994 0.007 0.160 0.000 0.107 27.5% 

 

Sentinel-3 OLCI 

As with Sentinel-2, several Chl-a algorithms were tested with the Venice 2018 dataset for C2RCC 

atmospherically corrected Sentinel-3 data.  These include the C2RCC conc_chl (Brockmann et 

al, 2016), a near infrared (NIR) to red 2-band ratio (BR) empirical model (Gitelson and 

Kondratyev, 1991; Dall’Olmo et al., 2003; Moses et al, 2009; Gitelson et al., 2011), a 3-band 

empirical model (Moses et al., 2009; Gilerson et al., 2010), the Normalised Difference 

Chlorophyll Index (NDCI; Mishra and Mishra, 2012), the NASA OC (Ocean Colour) 4-band 

algorithm (O’Reilly et al., 2000; OC4E) and the Sentinel-3 OC 4-band algorithm (Morel et al, 

2007; OC4ME), and the Colour Index (Hu et al., 2012). 

Of these, the best performing algorithm for the Venice 2018 dataset was the Colour Index (CI), 

which was tuned and implemented for Sentinel-3 as follows: 

𝐶𝐼 = 𝑅𝑟𝑠(560) − [𝑅𝑟𝑠(443) +
560−443

665−443
× (𝑅𝑟𝑠(665) − 𝑅𝑟𝑠(443))]   Equation 6 

𝐶ℎ𝑙 − 𝑎 (𝑚𝑔 𝑚−3) = 0.7646 ∗ 𝑒𝑥𝑝(91.294 ∗ 𝐶𝐼)    Equation 7 

 

Validation results are presented as scatterplots and a table of error metrics for each Chl-a 

model tested with the Venice 2018 dataset (Figure 31; Table 20).  An example Chl-a product 

map is also shown for the Venice Lagoon, Italy (Figure 32).  The Sentinel-3 Chl-a outperformed 

the Sentinel-2 Chl-a product, however this requires further validation to increase confidence 

due to the small sample size for 2018 (n=11). 

 



  
 
 

 

 58 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

 

Figure 31 -  Validation scatterplots for Venice 2018 Sentinel-3 Chl-a (unit: mg/m3), 

indicating R2 and linear regression fits 

 

Table 20 - Error metrics for CoastObs Sentinel-3 Chl-a product (unit: mg/m3), Venice 

2018 dataset (n=11) 

       

Algorithm R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 

C2RCC conc_chl 0.208 2.83 0.263 0.033 0.187 53.9% 

NIR/Red 2-band ratio 0.0824 0.0824 0.100 -0.011 0.076 19.0% 

3-band empirical 0.0891 0.0891 0.100 -0.011 0.077 19.2% 

NDCI 0.137 0.137 0.097 -0.010 0.080 19.5% 

OC4E 0.0581 1.23 0.273 -0.168 0.204 75.9% 

OC4Me 0.0667 2.37 0.375 -0.281 0.290 133% 

CI 0.445 0.544 0.072 0.000 0.064 14.5% 
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Figure 32 -  Example map of Sentinel-3 Chl-a product (Colour Index) for Venice Lagoon, 

Italy on 26 June 2018. 

 

3.1.2.2 Netherlands 

Sentinel-2 MSI and Sentinel-3 OLCI - Eemshaven 

Chl-a was derived from S3 and S2 Rrs using the Gons et al. (2005) algorithm applied to the 

atmospherically corrected flagged satellite data (augC2RCC and C2X, for S3 and S2, 

respectively). The model was applied with an adjustment to the Chl-a absorption coefficient, 

according Hommersom et al. (2009). 

Validation with data obtained from Eemshaven site shows that after August 2017, the Chl-a in 

situ sensor is stagnated to values between 2.1 and 4.5 mg.m-3, orange coloured data points 

(Figure 33). 



  
 
 

 

 60 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

 

Figure 33 - Validation of S3 derived Chl-a concentrations using the Eemshaven data set. 

 

The accuracy of S3-Chl-a product (without the orange data points, i.e. data after 25th Aug 2017) 

is relatively high with MAPE much less than the targeted accuracy by space agencies (of 30-

35%), with high value of R2 (0.96) and a slope that is 13% off unity.  Similar to S3, S2 Chl-a 

retrievals are accurate with MAPE below 20%, high R2 (0.87) and a slope (1.01) close to unity 

(Figure 34). 

The summary of the validation results of S2 and S3 retrievals of Chl-a is shown in Table 21. From 

the Eemshaven data we excluded the data corresponding to dates from August 2017 to January 

2018 because the field sensor exhibited erroneous measurements. 
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Figure 34 - Validation of S2 derived Chl-a concentrations using the Eemshaven data set. 

 

Table 21- Accuracy of S2 and S3 retrievals of Chl-a 

     

Product R2 slope RMSE MAPE (%) 

Sentinel-3 Chl-a 0.96 1.02 2.92 16.81 

Sentinel-2 Chl-a 0.87 1.01 4.01 18.71 

 

Sentinel-3 OLCI - Oosterschelde and Wadden Sea 

The S3 AugC2RCC ‘conc_chl’ product was evaluated for the Oosterschlede estuary and Wadden 

Sea 2018 dataset.  Validation scatterplots for S3 Chl-a with HPLC analysed Chl-a data obtained 

during the 2018 CoastObs sampling campaigns are shown in Figure 35, with error metrics 

presented in Table 22 and an example Chl-a map in Figure 36.  
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Figure 35 -  Validation scatterplots for S3 Chl-a product for the Oosterschelde Estuary 

(n=47) and Wadden Sea (n=17), indicating R2 and linear regression fit. 

 

Table 22 - Error metrics for S3 standard Chl-a product for the Netherlands 

 

Product R2 slope RMSElog Biaslog MAElog N 

Oosterschelde 0.56 0.62 0.62 0.0029 0.48 47 

Wadden Sea 0.59 1.12 1.49 -1.09 1.11 17 
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Figure 36 -  Example map of S3 Chl-a product (unit: mg/m3) for the Wadden Sea study 

area on 03.05.2018. Intertidal areas are excluded.  

 

3.1.2.3 Spain 

Sentinel-2 MSI   

The same suite of algorithms tested for Sentinel-2 using the Venice 2018 dataset were also 

implemented for the Vigo 2018 dataset (see 3.1.2.1).  Sentinel-2 data were atmospherically 

corrected with Polymer v4.8. 

Of these, the OC3E and CI algorithms showed comparable performance (Figure 37; Table 27).  

However, the lowest errors were for the CI algorithm, which was tuned and implemented as 

follows: 

 

𝐶𝐼 = 𝑅𝑟𝑠(560) − [𝑅𝑟𝑠(443) +
560−443

665−443
× (𝑅𝑟𝑠(665) − 𝑅𝑟𝑠(443))]   Equation 8 

𝐶ℎ𝑙 − 𝑎 (𝑚𝑔 𝑚−3) = 0.9477 ∗ 𝑒𝑥𝑝(358.66 ∗ 𝐶𝐼)    Equation 9 
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Figure 37 -  Validation scatterplots for the Vigo 2018 Sentinel-2 Chl-a product (unit: 

mg/m3), indicating R2 and linear regression fits 

 

Table 23 - Error metrics for CoastObs Sentinel-2 Chl-a product (unit: mg/m3), Vigo 2018 

dataset (n=29) 

       

Algorithm R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 

2-band ratio 0.153 0.153 0.357 -0.110 0.279 112% 

Polymer log_Chl 0.130 0.158 0.382 0.209 0.315 72.0% 

3-band empirical 0.041 0.041 0.375 -0.125 0.305 119% 

NDCI 0.061 0.042 0.360 -0.078 0.296 107% 

OC3E 0.493 0.449 0.304 0.150 0.256 52.0% 

CI 0.387 0.306 0.285 0.000 0.222 69.9% 

 

 



  
 
 

 

 65 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

 

Sentinel-3 OLCI  

The Chl-a models tested for the Spain coastal waters were derived either for use in the 

phytoplankton size class (Section 3.2.2) or the harmful algal bloom product (Section 3.2.4).  The 

validation results for these are thus presented by their use in the relevant higher level product, 

however we note there are comparable results for all Sentinel-3 Chl-a products.  

Chl-a for Phytoplankton Size Class Product 

The same suite of algorithms tested for Sentinel-3 using the Venice 2018 dataset were also 

implemented for the Vigo 2018 dataset (see Section 3.1.2.1), using data atmospherically 

corrected with C2RCC. 

Of these, the best performing algorithm was the Normalised Difference Chlorophyll Index 

(NDCI).  This was tuned and implemented for Sentinel-3 as follows:  

𝑁𝐷𝐶𝐼 =  
𝑅𝑟𝑠(705)−𝑅𝑟𝑠(665)

𝑅𝑟𝑠(705)+𝑅𝑟𝑠(665)
   Equation 10 

𝐶ℎ𝑙 − 𝑎 (𝑚𝑔 𝑚−3) =  𝑎 + (𝑏 ×  𝑁𝐷𝐶𝐼) + (𝑐 × 𝑁𝐷𝐶𝐼2)   Equation 11 

where a, b and c were tuned to -17.308,-183.68, -361.9, respectively, using the Vigo 2018 

dataset. 

Sentinel-3 Chl-a validation results for the Vigo 2018 dataset are shown in Figure 38 and Table 

24, with an example Chl-a product map in Figure 39. 

 

 

Figure 38 -  Validation scatterplots for Vigo 2018 Sentinel-3 Chl-a (unit: mg/m3), 

indicating R2 and linear regression fit 
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Table 24 - Error metrics for CoastObs Sentinel-3 Chl-a product (unit: mg/m3), Vigo 2018 

dataset (n=14) 

       

Algorithm R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 

C2RCC conc_chl 0.208 2.827 0.600 0.531 0.531 65.0% 

2-band ratio 0.694 0.694 0.209 -0.069 0.172 48.5% 

3-band empirical 0.452 0.452 0.301 -0.097 0.251 82.5% 

NDCI 0.812 0.812 0.136 -0.034 0.100 24.7% 

OC4E 0.616 0.445 0.499 0.439 0.439 58.9% 

OC4Me 0.598 0.655 0.466 0.372 0.372 49.2% 

CI 0.756 0.819 0.189 0.000 0.138 29.7% 

 

 

 

Figure 39 -  Example map of Sentinel-3 Chl-a product (NDCI) for Galician Rias, Spain on 

08 July 2018. 
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Chl-a for Harmful Algal Bloom Product 

A regional Chl-a algorithm based on Sentinel-3 images was developed for the Galician area 

following the methodological approach proposed by Gonzalez Vilas et al. (2011) for MERIS 

images.  Data and methods for this product were explained in the Harmful Algae Bloom Species 

Product Documentation (D 3.6). 

This method uses a fuzzy C-Mean clustering algorithm to define the application scope, and then 

applies a neural network (NN) algorithm to estimate the Chl-a concentrations. As explained in 

D 3.6, a different NN algorithm was developed for each one of the two clusters identified in the 

study area: NNRB-Cl#1 and NNRB-Cl#2.  

Algorithms were developed using a match-ups dataset derived from 35 Sentinel-3 images 

between April 2016 and November 2018 and in situ Chl-a concentrations from the INTECMAR 

monitoring program (see D 3.6).  Moreover, an independent match-ups dataset was built using 

in situ Chl-a concentrations from the dedicated CoastObs campaigns (May-June 2018; June 

2019) and from the INTECMAR monitoring program between December 2018 and April 2019.  

 

Figure 40 -  Validation scatterplots obtained from the independent test dataset. a) 

NNRB-Cl#1 b) NNRB-Cl#2 
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Figure 40 shows the relationships between the modelled and observed Chl-a concentrations 

using only data from the independent test set for both algorithms. Table 25 summarized the 

error metrics computed using both the dataset used for the development of the algorithms and 

for the independent test dataset. The development dataset include data from the training and 

validation sets (see D 3.6).  

Table 25 - Error metrics for NNRB-Cl#1 and NNRB-Cl#2, computed from the datasets 

used for the developent of the algorithms and from the independent test set.  

 

Product N R2 slope RMSE Bias MAE 

NNRB-Cl#1 – Dev. 116 0.81 0.96 0.23 0.06 0.18 

NNRB-Cl#1 – Test 30 0.39 0.20 0.96 -0.49 0.68 

NNRB-Cl#2– Dev. 193 0.89 0.94 0.87 0.10 0.49 

NNRB-Cl#2– Test 37 0.76 1.10 1.80 0.89 1.36 

 

As expected, results from the test datasets are worse than the obtained ones from the 

development datasets. In fact, NNRB-Cl#1 results are clearly worse, evidencing that this 

algorithm is not robust enough for producing reliable results, although a linear trend is 

observed (Figure 40).  

As compared to NNRB-Cl#1, NNRB-Cl#2 shows a better fitting with a lower difference between 

the R2 values computed from the development and test datasets.    It also shows a clear positive 

deviation from the expected concentrations (Figure 40) in the test dataset (bias = 0.89), which 

however it is not observed in the development dataset (bias = 0.10).  

Despite of the better fitting observed in NNRB-Cl#2, error metrics (i.e. RMSE and MAE) shows 

lower values in NNRB-Cl#1. This could be explained by the lower Chl-a range observed in 

Cluster#1, with more than 90% of the values lower than 4 mg m-3. However, Cluster#2 shows a 

greater range and NNRB-Cl#2 results are more affected by Chl-a peaks (concentrations up to 

10 mg m-3). 

Figure 41 shows a Chl-a map obtained from a Sentinel-3 image on 19 June 2018 using the NNRB-

Cl#2 algorithm. 

 



  
 
 

 

 69 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

 

Figure 41 -  Chl-a map from NNRB-Cl#2 for 19 June 2018 

 

3.1.3 Total Suspended Matter (TSM) and Turbidity 

Total suspended matter (TSM) products (also referred to as suspended particulat matter, SPM) 

were developed for Sentinel-2 and -3, using the best-performing atmospheric correction. These 

validation results are presented by region below, describing the algorithms tested, where 

relevent. The Nechad et al. (2010) algorithm was chosen and tuned to regional datasets for 

TSM estimation in most of the studied regions (e.g. Italy, Netherlands, and Spain) and indicated 

generally good performance for each region. In particular, the band-switching algorithm for 

turbid esturies by Novoa et al. (2017) was chosen in Loire estuary (France) where the TSM 

values reached ~2000 g/m3. The Dogliotti et al. (2015) algorithm was chosen and tuned to the 

Venice Lagoon (Italy) dataset to estimate water turbidity. More details about the algorithms 

used and validation results are described below. 
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Table 26 - Best-performing TSM and turbidity algorithms by region 

TSM and Turbidity algorithm performance 

Country Regions Time Satellite 

sensor  

Atmospheric 

Correction 

Best performing 

algorithm 

France Loire Estuary 2016 S2 MSI ACOLITE band-switching algorithm 

(Novoa et al., 2017; 

Gernez et al., 2017) 

Italy Venice 

Lagoon 

Jan-

May 

2019 

S2 MSI ACOLITE Turbidity – (Dogliotti et 

al., 2015) 

S2 MSI and 

L8 

ACOLITE TSM – (Nechad et al., 

2010) 

Spain Ria de Vigo 2018 S3 OLCI C2RCC Nechad et al., 2010 

Netherlands Eemshaven 2017-

2018 

S2 MSI C2X Nechad et al., 2010 

S3 OLCI augC2RCC Nechad et al., 2010 

 

3.1.3.1 France  

In the Loire estuary (north of Bourgneuf Bay), the concentration of total suspended matter (TSM) 

was computed using a band-switching algorithm developed for turbid nearshore waters (Novoa 

et al., 2017) and specifically calibrated for Sentinel-2 (Gernez et al., 2017). High-frequency 

automated in situ turbidity measurements from the SYVEL monitoring network1 were used to 

validate Sentinel-2 derived TSM data for 2016, as described in detail in D3.8 (see also Figure 42 

below, and Table 27). 

                                                           
 

 

1 http://www.loire-estuaire.org/dif/do/init 
 

http://www.loire-estuaire.org/dif/do/init
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Figure 42 -  Validation scatterplot for TSM CoastObs product, indicating R2 and linear 

regression fit. 

Table 27 - Error metrics for TSM CoastObs product 

 

TSM R2 slope RMSE_log Bias_log MAE_log N 

Loire estuary 0.89 0.80 0.14 -0.26 0.51 23 

 

3.1.3.2 Italy 

Intensive and expeditive fieldworks were undertaken in the LV to gather data for the purpose 

of validating CoastObs standard products, including water reflectance and water-quality 

parameters (turbidity and SPM). Here SPM (suspended particulate matter) has the same 

meaning with TSM (total suspended matter). 

Starting from January 2019 to May 2019, 14 campaigns were carried out, synchronous with the 

passage of Landsat 8 (L8) and Sentinel-2 (S2) satellites. The measurement stations were located 

in the area of the Lido tidal mouth and in the central sector of the lagoon. In the area of Lido 

inlet, the 6-8 stations were distributed along the channel network from lagoonal waters to the 

littoral zone, following the tidal current. The stations were visited in different tidal and 

meteorological conditions, which influenced the natural variability of suspended sediment load 

and circulation. Thus, a subsequent wide range of water transparency was measured in a few 

kilometres (Secchi depths ranged from 1 to 5 meters) and suspended inorganic sediment was 

the main factor in determining the optical water quality. 
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A total of 120 stations were visited with a maximum time difference of 1 h from the satellite 

overpasses, because of the short-term variability of water physical and chemical properties and 

turbidity in the study area. At each station, above water remote sensing reflectances were 

measured with the WISP-3 spectroradiometer (Water Insight), CTD profiles were performed 

with Ocean Seven 316Plus multi-parameter probe (Idronaut) equipped with optical 

backscattering sensor for the measurement of turbidity at 880 nm (Seapoint) and water 

transparency was assessed with Secchi Disk. Discrete surface water samples were also collected 

and subsequently filtered in the laboratory, to estimate the concentration of suspended 

particulate matter (SPM) with the determination of the organic and inorganic components. 

The list of campaigns carried out has been summarized in Table 5. Figure 43 shows the map 

and the coordinates of the stations investigated. 
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a)  

b)   c)  

Figure 43 -  a) Study area with location of fieldwork activities carried out from January to 

May 2019 (red dots: measurement stations on 20th March 2019 in the central sector of 

the LV; yellow dots: revisited stations at the Lido inlet; b) Zoom on the revisited 

stations at the Lido inlet; c) Coordinates of the revisited stations at the Lido inlet.  

Turbidity  

The ACOLITE-derived water leaving reflectance (ρw(λ)) were converted in turbidity (T, expressed 

in formazin nephelometric unit [FNU]), as follows (Dogliotti et al., 2015): 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 [𝐹𝑁𝑈] =
𝐴𝑇

𝜆𝜌𝑊(𝜆)

1− 𝜌𝑊(𝜆)/𝐶𝜆    Equation 12 

 Lat Long 

ST1 45.42670 12.37400 

ST2 45.43170 12.37880 

ST3 45.42670 12.42320 

ST4 45.41830 12.44630 

ST5 45.43585 12.39185 

ST6 45.43120 12.40854 

ST7 45.44516 12.41955 

ST8 45.40795 12.45942 
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where ρw refers to Sentinel-2 spectral band 4 (red) or band 8 (near infrared) and to Landsat 8 

spectral band 4 (red) or band 5 (near infrared), and AT and C were two wavelength-dependent 

calibration coefficients taken from Nechad et al. (2009) and recalibrated to Landsat and 

Sentinel-2 spectral ranges. The parameter C was calibrated using “standard” inherent optical 

properties (IOPs) as described in Nechad et al. (2010), while the AT coefficient was obtained by 

a non-linear least-square regression analysis using in situ measurements of T and rw in various 

European and South American coastal and estuarine environments (Dogliotti et al., 2015).The 

algorithm is reliable over a wide range of turbidity values (1-1500 FNU), avoiding saturation 

issues by adopting a band-switching scheme between red and near infrared ranges (Dogliotti 

et al., 2015). In the case of Venice Lagoon, we had better performance with the Red band and 

we decided not to apply the band-switching scheme. For the case of Po river plume, the band-

switching scheme was adopted because of the higher turbidity values, as demonstrated in 

Brando et al. (2015) and Braga et al. (2017). 

In situ collected turbidity data that we considered the mean value of the upper 1-m profile data 

by cast were used to assess the accuracy of T and SPM products derived from L8 and S2 imagery. 

A total of 105 match-ups (78 with S2 and 27 with L8, 20 of those with both S2 and L8) between 

satellite and in situ data collection were available by considering a maximum time difference of 

1 h. Figure 44 shows the scatter plots of the L8 and S2 derived estimates of turbidity versus in 

situ measurements: the correlations were statistically significant with a coefficient of 

correlation r of 0.975 and 0.984, a coefficient of determination R2 of 0.9518 and 0.9698, and 

the same RMSE of 2.48, for the S2 and L8 derived turbidity, respectively. See Table 28 for the 

complete statistics of fitting. An example of turbidity maps derived from near-simultaneous 

overpasses of Sentinel-2 (overpass time 10:13 UTC) and Landsat 8 (overpass time 09:58 UTC) 

on 24/01/2019 is shown on Figure 45. 
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a)  

b)  

Figure 44 -  Validation scatterplot(s) for Turbidity CoastObs product, indicating R2 and 

linear regression fit. a) Sentinel-2; b) Landsat 8. In both plots, the number of samples (n) 

and the 1:1 line is plotted as dotted lines. 
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Table 28 -  Error metrics for Turbidity CoastObs products 

 

Product R2 slope RMSE Bias MAE N 

LV/turbidity S2 0.9518 0.9527 2.48 FNU -0.59 1.90 FNU 78 

LV/turbidity L8 0.9698 1.050 2.48 FNU 0.276 1.95 FNU 27 

 

 

a)   b)  

  

Figure 45 -  Example maps of Turbidity CoastObs product for 24.01.2019. a) Sentinel-2 

(overpass time 10:13 UTC); b) Landsat 8 (overpass time 09:58 UTC). 

 

The intercomparison of turbidity products for near-simultaneous overpasses of L8 and S2 with 

all the available matchups (3 field campaigns, n=20) is also shown in Figure 46. The scatterplot 

reveals a quite good product consistency under different atmospheric/aquatic conditions (very 

turbid water on 24 January; turbid water on 25 February and clear water on 22 March 2019). 

Turbidity (Dogliotti et al., 2015) derived from L8 and S2 were, on average, in good agreements, 

i.e., ∆T = 1.56 FNU, with S2 producing lower values. In the Lagoon of Venice, the constellation 

of Landsat-8 and Sentinel-2A/B data enables a 2-3 day revisit time, so the aquatic science and 

end-user community can benefit from high-quality and consistent products for operational 

purposes. 
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24/01/2019 

 
25/02/2019 

 
22/03/2019 

 

Figure 46 -  The intercomparison of Turbidity products for near-simultaneous overpasses 

of L8 and S2 with the available matchups (3 field campaigns). On the left, the S2 pseudo 

true-color images, corresponding to the match-ups. 

 

SPM  

For the retrieval of SPM concentration, the ACOLITE-derived water leaving reflectance (ρw(λ)) 

were converted according to Nechad et al. (2010): 

𝑆𝑃𝑀 [𝑚𝑔/𝐿] =
𝐴𝜆𝜌𝑊(𝜆)

1− 𝜌𝑊(𝜆)/𝐶𝜆 + 𝐵𝜆    Equation 13 

where ρw refers to Sentinel-2 spectral band 4 (red) and to Landsat 8 spectral band 4 (red), and 

A, B and C are three wavelength-dependent calibration coefficients.  

In situ collected SPM concentrations that are the result of the gravimetric analysis were used 

to assess the accuracy of T and SPM products derived from L8 and S2 imagery. 
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Similarily, a total of 105 match-ups (78 with S2 and 27 with L8, 20 of those with both S2 and L8) 

between satellite and in situ data collection were available by considering a maximum time 

difference of 1 h.   

Figure 47 shows the scatter plots of the L8 and S2 derived estimates of SPM concentration 

versus in situ measurements: the correlations were statistically discrete with a coefficient of 

correlation r of 0.694 and 0.842, a coefficient of determination R2 of 0.4826 and 0.7102, and a 

RMSE of 7.5 and 9.4, for the S2 and L8 derived SPM, respectively. See Table 29 for the complete 

statistics of fitting. Both L8 and S2 derived SPM products overestimate in situ SPM 

concentration. An example of the SPM map in the Lagoon of Venice is shown on Figure 48. 

Further improvements may involve parametrization of a robust region-specific relation 

between T and SPM concentration, as the optical properties of particulate matter vary 

seasonally, within and between regions, due to the variability in bulk particle composition. As 

reported on Figure 49, a weak correlation was also found between in situ turbidity and SPM 

concentration: this could be due to sampling and/or filtration issues. 
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a)  

b)  

Figure 47 - Validation scatterplot(s) for SPM CoastObs product, indicating R2 and linear 

regression fit. a) Sentinel-2; b) Landsat 8. In both plots, the number of samples (n) and 

the 1:1 line is plotted as dotted lines. 

 

Table 29 -  Error metrics for SPM CoastObs products 

 

Product R2 slope RMSE Bias MAE N 

LV/SPM S2 0.4826 1.093 7.5 mg/l 5.9 6.5 mg/l 78 

LV/SPM L8 0.7102 1.2603 9.4 mg/l 8.5 8.5 mg/l 27 
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Figure 48 -  Example map of SPM CoastObs product for S2 acquired on 20.03.2019 

 

Figure 49 -The intercomparison of in situ Turbidity and SPM/SPIM concentration. 
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3.1.3.3 Netherlands 

For Sentinel-3 data, SPM was derived using the Nechad et al. (2010) algorithm applied to the 

atmospherically corrected flagged satellite data. In addition, data from the automated 

measurement station at Eemshaven (Lat 53.47439 Lon 6.82173) owned by RWS were provided 

for a list of satellite matchup times. For each matchup, data at a 1-minute time interval were 

provided for a time window of 24 hours around the actual satellite overpass time. 71 dates 

were used as matchups for the period between 07/06/2016 to 18/01/2018. The observations 

closest in time to satellite overpasses were used to compare with the satellite results (Figure 

50). We note that here SPM (suspended particulate matter) has the same meaning and unit 

with TSM (total suspended matter). 

 

 

Figure 50 - Validation of S3-SPM products using the Eemshaven data set. Outliers are 

highlighted in red boxes but not excluded for the Goodness of Fit (GoF) parameter 

calculations 

 

For Sentinel-2 data, Nechad et al. (2010) was applied to S2 imagery to derive SPM. The results 

of the validation are shown in Figure 51.  For Eemshaven, the S2 derived SPM product are of 

high quality, except for one outlier highlighted in a red box.  Removing this outlier results in the 

following Goodness of fit (Gof): slope = 1.09, offset = -1.35 [g.m-3], R2 = 0.97 and MAPE = 

5.02[%]. 
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Figure 51 - Validation of S2 derived SPM concentrations using the Eemshaven data set. 

GoF parameters calculated without excluding the outlier in the red box. 

 

A summary of the SPM validation results of S2 and S3 retrievals are shown in Table 30.  

The importance of simultaneous sampling is illustrated nicely in Figure 51, where we see many 

SPM results very close to the 1:1 line with two small clusters where the measured values are 

almost the same and the satellite values are variable. We hypothesise that this is due to a 

malfunction of the in situ instrument.  

 

Table 30 - Overall accuracy of S2 and S3 retrievals of SPM for the Netherlands 

   

Product R2 slope RMSE MAPE (%) 

S3 0.72 1.26 6.14 21.24 

S2 0.33 2.72 16.86 45.05 
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3.1.3.4 Spain 

Both simple empirical algorithms (Toming et al., 2017) and the analytical algorithm (Nechad et 

al., 2010; Novoa et al., 2017) were tested for TSM estimation in Ria de Vigo using the 2018 

dataset. The tuned Nechad method for turbid waters worked best for Vigo S3 dataset 

(atmospherically corrected with C2RCC). The TSM aglorithm in Vigo can be expressed as 

follows: 

𝑇𝑆𝑀 = 9418.39 ∗
𝑅𝑟𝑠(665)

1−𝑅𝑟𝑠(665)/17.28
+ 1.41    Equation 14 

Figure 52 presents the scatterplot of S3 modelled TSM versus in situ measured TSM at Vigo, 

and Table 31 indicates the error metrics. It shows that the Nechad analytical method generally 

performs well in Ria de Vigo where the water is relatively turbid and the average TSM 

concentration is about 6.7 mg/L. Note that further validation result will be added after the 2019 

in situ measured TSM data in Vigo is available. 

An example TSM map for the Ria de Vigo region is shown for 8th July in Figure 53, 

demonstrating the spatial pattern of the suspended particle distribution in this area. 

 

Figure 52 - Validation scatterplot(s) for TSM CoastObs product in  Ria de Vigo, 

respectively, indicating R2 and linear regression fit for the Vigo 2018 dataset 

 

Table 31 - Error metrics for TSM CoastObs product in Ria de Vigo 

    

Product R2 slope RMSElog Biaslog MAElog MAPE N 

Vigo TSM 0.46 0.46 0.18 0.03 0.03 37.1% 19 
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Figure 53 -  Example map of TSM products for the Galician coastal waters, Spain (8 July 

2018) 

 

3.1.4 Sea surface temperature (SST) 

3.1.4.1 Italy and Spain 

Sea Surface Temperature (SST) data were acquired for use in the satellite primary production 

product (see Section 3.2.3).  In the m2VGPM, PB
opt (maximum C fixation rate) is modelled as a 

function of temperature.    In situ temperatures were measured during the Venice and Vigo 

2019 campaigns by either manual thermometer readings or using the temperature sensor on a 

C6 submersible fluorometer (Turner Designs). 

Satellite SST data were downloaded on 27/9/2019 from the GHRSST dataset 

(https://www.ghrsst.org/ghrsst-data-services/products/).  SST data were provided as a L4 gap-

free gridded product, which is generated by combining complementary satellite and in situ 

observations within Optimal Interpolation systems.  The advantage of the L4 dataset is 

increased temporal coverage, however the spatial resolution is coarse (1 km).  GHRSST L4 data 

were converted from Kelvin to °C using the following conversion: 

SST (K) – 273.15 = SST (°C)      Equation 15 

https://www.ghrsst.org/ghrsst-data-services/products/
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While there was a large amount of scatter in the relationship between satellite and in situ SST 

(Figure 54), the R2 value for both datasets combined was high (0.962).  However, we note this 

is driven by two distint clusters of data, therefore further validation over a broader range of 

temperatures would improve the validation for this parameter.  Indeed, for the Netherlands 

dataset, the GHRSST data performed well over a wider range of temperatures (~5-20 °C; See 

Section 3.1.4.2).  Error metrics for Vigo, Venice and the combined dataset are presented in 

Table 32. 

 

Figure 54 -  Validation scatterplot for the Sea Surface Temperature (SST) product, 

indicating R2 and linear regression fit 

 

Table 32 - Error metrics for SST CoastObs product 

  

Region R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 
N 

Venice Lagoon and 

Adriatic Sea, Italy 
0.135 2.32 0.0105 0.00587 0.00866 

1.97% 
11 

Ria de Vigo, Spain 0.052 0.214 0.0275 0.0186 0.0227 5.06% 39 

All 0.962 1.02 0.0248 0.0158 0.0196 4.38% 50 
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Figure 55 -  Example map of GHRSST product for 03.06.2019 (SST, Kelvin) 

 

3.1.4.2 Netherlands 

GHRSST 

For SST matchups, data were extracted at the location of the in situ station (Figure 56), except 

where those were very close to the shore, then the satellite data were retrieved from a point a 

short distance offshore. In such a way, 807 matchups were produced. The correlation between 

the in situ and satellite data is illustrated in Figure 57, the corresponding statistics are given in 

Table 33. Overall, the data correspond well, with a good correlation, low error and only very 

few outliers.  

<280 >300 
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Figure 56 - Location of SST in situ stations in the Wadden Sea, Netherlands 

 

 

 Figure 57 - Scatterplot in situ (daily median) versus GHRSST 1km data for SST for the 7 

stations in the study area (2017) 
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Table 33 - Statistics for SST retrieval for GHRSST data in the Netherlands 

      

Region 
Satellite 

Dataset 
R2 slope RMSE N 

Wadden Sea, 

Netherlands 
GHRSST 0.96 

0.91 
1.01 807 

 

 

Landsat 8 

For matchups, data were extracted at the location of the in situ station, except where those 

were very close to the shore, then the satellite data were retrieved from a point a short distance 

offshore. The satellite-derived value was compared to the median of the 2-hour interval into 

which it fell. If there was no data for that interval, the closest time interval was used if it was of 

the same day. In such a way, 60 matchups were produced. The correlation between the in situ 

and EO data is illustrated in Figure 58, the corresponding statistics are given in Table 34. Overall, 

the data correspond well, with a good correlation, low error and only very few outliers. The 

correlation between medium resolution EO-based and in situ SST is quite good. 

 

Figure 58 - Scatterplot in situ (2-hour median) versus Landsat8 data for SST for the 24 

stations in the Wadden Sea (2017) 
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Table 34 - Statistics for SST retrieval for medium resolution data in the Netherlands 

      

Region 
Satellite 

Dataset 

R2 
slope RMSE N 

Wadden Sea, 

Netherlands 

Landsat 8 

SST 

0.97 0.86 
1.07 60 

 

 

3.1.5 Euphotic Depth (Zeu) 

3.1.5.1 Italy and Spain 

Euphotic depth (Zeu; m) is defined as the depth where photosynthetic available radiation (PAR) 

is 1% of its surface value (Kirk, 1994).  This parameter is required for the CoastObs Primary 

Productivity model, and has been developed for use in the Italy and Spain regions for this 

purpose (see Section 3.2.3).   

In situ PAR was measured using a Li-Cor spherical underwater quantum sensor (LI-193; 400-700 

nm), and the PAR diffuse attenuation coefficient (Kd(PAR)) was calculated as a function of depth 

(z), PAR at depth z (PAR(z)), and PAR just below the surface (PAR(0-)) as follows: 

𝐾𝑑(𝑃𝐴𝑅) =
−ln (

𝑃𝐴𝑅(𝑧)

𝑃𝐴𝑅(0−)
)

𝑧
    Equation 16 

 

Thus, the natural logarithm of the measured downwelling irradiance was plotted against depth, 

and an estimate of Kd(PAR) was acquired as the resulting slope.  Data where above water 

illumination conditions were variable were not used.  In situ Kd(PAR) data were converted to 

euphotic depth using a conversion of 4.6/Kd(PAR) (Pierson et al., 2008). 

Satellite Zeu was derived from C2RCC atmospherically corrected Sentinel-3 data, where the 

algorithm was tuned using the Italy and Spain datasets from 2019 (Figure 59).  The resulting 

algorithm for Zeu from C2RCC S3 data is as follows: 

𝑍𝑒𝑢 (m) =  24.406 ∗  𝑒𝑥𝑝 (−0.564 ∗ (
𝑅𝑟𝑠(560)

𝑅𝑟𝑠(490)
))  Equation 17 

 

Validation errors for the Zeu product from same-day matchups are presented in Table 35. 
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Figure 59 -  Calibration scatterplot to tune Zeu as a functin oof Rrs (560)/ Rrs (490) (left) 

and validation scatterplot(s) for Euphotic Depth (Zeu; m), indicating R2 and linear 

regression fit (right).  

Table 35 - Error metrics for Zeu CoastObs product 

   

Region R2 slope RMSElog Biaslog MAElog MAPE% n 

Venice Lagoon and 

Adriatic Sea, Italy 
0.750 -0.220 0.127 -0.00189 0.0980 

21.4% 5 

Ria de Vigo, Spain 0.564 0.495 0.0739 0.000618 0.0602 14.1% 15 

All 0.415 0.418 0.0900 -9.26 E-06 0.0697 16.0% 20 

 

3.1.6 Daily irradiance (E0) 

3.1.6.1 Italy and Spain 

Daily irradiance, E0 (µmol m-2 s-1), data were required for input for the Primary Productivity 

product (see Section 3.2.3).  PAR(0+) was measured in situ during the 2019 Italy and Spain 

campaigns using an above water quantum scalar Li-Cor sensor.  The daily PAR curve was 

modelled using the incident() function in R (phytotools package), which models E0  as a function 

of  date, latitude, longitude, elevation, time zone, and mean daily PAR from all stations 

measured on each day.  Daily E0 was then calculated as the integral of the modelled daily daily 

PAR (mol m-2). 

Satellite E0 data were acquired from the EUMETSAT data centre 

(https://archive.eumetsat.int/usc/ ) on 03/10/2019.  These data are products derived from 

https://archive.eumetsat.int/usc/
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SEVIRI onboard the geostationary satellite Meteosat (9/10/11), which is rather low spatial (5 

km), but high temporal resolution (daily).  Daily shortwave solar irradiance (SSI) that reaches 

the Earth’s surface is calculcated from the 0.6 µm visible channel, where the daily value is 

integration of all the hourly values in the UT day.  The product is provided on a 0.05° regular 

grid and expressed in W/m2.  The Meteosat SSI product was tuned to the 2019 E0 daily modelled 

in situ dataset, as follows: 

E0 (mol m-2) = 0.2853 x SSI1.06   Equation 18 

 

The calibration and validation scatterplots for E0 are presented in Figure 60, with error metrics 

shown in Table 36.  Overall, there is a good correlation between the tuned E0 product and in 

situ daily irradiance. However, we note as there are several stations collected on the same date, 

there are the same values for in situ E0 for several stations; this results in the vertical lines on 

the validation plot.  When only a single station for each date is compared, the coefficient of 

determination is slightly improved (R2 = 0.6614). 

 

 

Figure 60 -  Calibration scatterplot to tune Meteosat SSI as a function of in situ daily 

modelled irradiance, E0, (left) and validation scatterplot for E0, indicating R2 and linear 

regression fit (right).  
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Table 36 – Error metrics for the daily PAR, E0, CoastObs product 

   

Region R2 slope RMSElog Biaslog MAElog MAPE (%) N 

Venice Lagoon and 

Adriatic Sea, Italy 
0.892 1.62 0.0918 -0.0325 0.0800 

19.7% 26 

Ria de Vigo, Spain 0.804 0.556 0.115 0.0575 0.103 21.9% 58 

All 0.639 0.570 0.109 0.0304 0.0961 21.2% 83 

 

3.2 Innovative and Supplementary Products 

3.2.1 Seagrass and Macro-Algae (SMA) 

The data and method for this product was presented in the Seagrass and Macro-Algae Product 

Documentation (D3.3). 

3.2.1.1 Inter-tidal seagrass 

From in situ radiometric measurements collected in 2018 over a gradient from 0 to 100% of 

seagrass coverage, the normalized differential vegetation index (NDVI) was estimated. These 

measurements allowed us to calibrate a model to further estimate seagrass percent cover from 

S2 images (Figure 61). Such model was validated with independent datasets collected in 2019 

over seagrass meadows dominated by Z. noltei in Bourgneuf Bay and Marenne Oleron, France.  
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Figure 61 -  Algorithm validation for seagrass percent cover as a function of NDVI. Red 

dots correspond to Bourgneuf bay dataset collected in 2018; blue dots correspond to 

Bourgneuf bay dataset collected in 2019; and green dots correspond to Marenne Oléron 

dataset collected in 2019.  

Based on the analysis of the seasonal variability of the seagrass NDVI, the S2 image of the 14 

September 2018 was found to best correspond to the seagrass annual maximum. The seagrass 

percent cover (SPC) was then estimated for this date using the NDVI – SPC relationship obtained 

in 2018 (see previous Figure). In situ SPC measurements were also available the same day, 

allowing us to validate SPC satellite retrieval (Figure 62). The matchup between in situ and S2-

derived seagrass percent cover showed satisfactory results (Table 37). A limited dispersion was 

observed for low (< 20%) and high (> 80%) percent cover, likely due to the spatial homogeneity 

of patches of sparse and dense seagrass cover, respectively, at the scale of one S2 pixel. The 

patches of intermediate SPC were observed as being more spatially heterogeneous, thus 

explaining the higher variability in the matchups results. The validation stations used in this 

effort are showed in Figure 72 and an example of the seagrass percent cover produced in 

Bourgneuf Bay in 2018 is displayed in Figure 73.  
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Figure 62 -  Validation of seagrass percent cover product. It is shown R2 and linear 

regression fit. 

 

Table 37 - Error metrics for seagrass percent cover CoastObs product in intertidal areas  

 

Product R2 slope RMSE Bias MAE N 

Bourgneuf Bay 0.87 0.94 5.73 -1.51 2.73 56 
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Figure 63 -  Spatial distribution of stations used  to validate seagrass percent cover 

CoastObs product in 2018 over intertidal areas 

 

 

Figure 64 -  Example map seagrass percent cover CoastObs product over intertidal areas 

in 2018 
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3.2.1.2 Sub-tidal seagrass 

In situ radiometric measurements were collected in 38 stations on the 9 and 11 July 2019 in the 

Glénan Archipelago. In each station, radiometric information was collected along one transect, 

simultaneously with information about bottom coverage. At the end of the transect, bottom 

depth was measured. Those in situ measurements (both in hyperspectral resolution and 

degraded to the Sentinel2 bands) were used to evaluate the performance of the Shallow Water 

Semi-Analytical Model (SWAM, Wettle and Brando, 2006) algorithm (More details about SWAM 

can be found in the Deliverable D3.3 „Seagrass and Macro-Algae Product”). Because in situ 

radiometric samples were not submitted to uncertainties introduced by atmospheric effects, 

they allowed us to analyze ideal situations:  

- from hyperspectral in situ measurements it was possible to evaluate limitations in the 

SWAM algorithm itself and caused by spectral proximity between macroalgae and 

seagrass reflectance curves, and 

- from Sentinel2 simulated bands it was possible to evaluate the impact of lost in spectral 

resolution. 

SWAM was also run in a Sentinel2 image acquired on the 06/Jul/2019 and previously corrected 

with POLYMER from atmospheric effects. This processing provided a more realistic situation, 

whose outputs were associated additionally to uncertainties introduced by the atmospheric 

correction and degradation to the spatial resolution in the Sentinel2 pixels. In situ 

environmental information of the bottom depth and substrate percent cover was collected 

over 210 stations in a dedicated campaign for validation, between 8 and 11 of July 2019 in the 

Glénan Archipelago and used to evaluate bottom percent cover products. 

From SWAM outputs, we excluded all the stations where a substrate detectability index (SDI) 

lower than 5 was retrieved. Stations/pixels with SDI<5 did not include sufficient contribution 

from the bottom to the radiometric signal at surface, and this situation corresponded to sites 

comprising either substrate very dark and/or too deep. In general, for all SWAM products, when 

there were contrasted those derived from hyperspectral against from S2 simulated bands, it 

could be observed a similar performance between them indicating that the lost in spectral 

resolution was not the main factor driving uncertainties. Considering first bottom depth 

estimated from SWAM, it can be seen that the model was able to retrieve depths in the same 

range than in situ values, however with some dispersion of data (Figure 65 and Table 38). 

Depths retrieved from hyperspectral data showed a slope near 1, while reducing spectral 

resolution of inputs resulted in some underestimation in SWAM outputs. 
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Figure 65 -  Validation scatterplot  for depth CoastObs product derived from in situ 

radiometric data, as hyperspectral data (blue dots) and simulated S2 bands 

 

Table 38 – Error metrics for depth CoastObs product 

Table 18 

Product R2 slope RMSE Bias MAE N 

Depth derived from 

hyperspectral in situ radiometric 

data 

0.35 0.97 1.10 0.15 0.80 24 

Depth derived from S2 simulated 

in situ radiometric data 
0.32 0.66 0.89 -0.44 0.72 24 

 

This was the first attempt to validate SWAM outputs in subtidal seagrass meadows. Note that 

SWAM was developed originally to be run in coral reef environments, where spectral 

differences between coral and macroalgae classes are usually sufficient for their separability. 

Our results suggested that the spectral similarity among different vegetation types (e.g., 

seagrass, red algae, brown algae and green algae) immerse in the optically complex waters of 

the Glénan archipelago made differentiation between macroalgae and seagrass very difficult. 

This confusion between classes can explain high errors associated to SPC and MPC, even 

derived from in situ radiometric samples (Table 39 and Table 40). We decided to merge both 

classes (seagrass and macroalgae) into a class called Vegetation Percent Cover (VPC). For this 
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new class, uncertainties were significatively decreased (Table 41) showing that a confusion 

between seagrass and macroalgae classes existed. In general, the model tended to 

overestimate vegetation percent cover while underestimating sand cover (Figure 66a and d and 

Figure 67a and d).  

Besides model parameterizations themselves that can contribute to uncertainties in SWAM 

outputs and spectral closure of seagrass and macroalgae, we identified additional sources that 

can be pointed as responsible for uncertainties found here:  

- even with careful pos-processing of in situ above-water radiometric measurements, 

they can still contain some surface and sky contamination. The processing of in situ 

samples over shallow waters is in the state-of-the-art and needs improvements by the 

ocean color community. 

- In the analysis of underwater bottom pictures, we systematically found drifting algae 

and detached seagrass leaves. This moving vegetation is associated with high 

hydrodynamics in the area and with strong impacts of navigation activities during 

summer and is not possible to quantify and predict, i.e., our radiometric measurements 

and bottom characterization can correspond to slightly different scenarios as that 

vegetation is not fixed to the bottom and constant along the time of measurements. 

- Sand substrate usually contain some associated microphytobenthos, not possible to 

quantify from underwater pictures. Pigments associated to those microalgae affect 

sand reflectance spectrum and could be also responsible for overestimation in 

vegetation proportions. New runs of SWAM will be performed using other reference 

spectrum for sand that can include also some maerl and microphytobenthos.   

The 210 validation stations used in this effort in the Glénan Archipelago are displayed in 

Figure 38 and examples of the SPC, MPC and VPC products can be seen in Figure 69 to 

Figure 71. In a qualitative analysis of the spatial distribution of the SWAM products we could 

observe that SWAM outputs were spatially dependent. There are some portions of the 

image where SWAM was successfully able to retrieve the real bottom composition, mainly 

where substrates were dominated by one of the three classes (either seagrass, sand or 

macroalgae). These situations probably coincided with a shorter optical path length, either 

due to a shallower bottom and/or more stable conditions of the water column (i.e., lower 

resuspension of the bottom and lower turbidity). Generally, uncertainties were higher when 

substrate presented mixed and patchy composition in deeper areas of the archipelago.  
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Figure 66 -  Validation scatterplot  for CoastObs product derived from in situ radiometric 

data in shallow waters, as hyperspectral data (blue dots) and simulated S2 bands: (a) 

sand percent cover, (b) seagrass percent cover (SPC), (c) macroalgae percent cover 

(MPC), and (d) vegetation percent cover (VPC). 
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Figure 67 -  Validation scatterplot  for CoastObs product derived from Sentinel2 

acquired on the 6/7/2019 in shallow waters: (a) sand percent cover, (b) seagrass percent 

cover (SPC), (c) macroalgae percent cover (MPC), and (d) vegetation percent cover 

(VPC). 
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Table 39 – Error metrics for seagrass percent cover (SPC) CoastObs product 

Table 19 

Product R2 slope RMSE Bias MAE N 

SPC derived from hyperspectral 

in situ radiometric data 
0.01 0.07 46.9 32.89 41.38 22 

SPC derived from S2 simulated in 

situ radiometric data 
0.004 0.07 52.68 39.02 46.57 22 

SPC derived from a S2 image  0.08 0.18 33.36 19.27 29.23 182 

 

Table 40 -  Error metrics for macroalgae percent cover (MPC) CoastObs product 

Table 20 

Product R2 slope RMSE Bias MAE N 

MPC derived from hyperspectral 

in situ radiometric data 
0.37 0.12 27.70 -5.00 20.26 22 

MPC derived from S2 simulated 

in situ radiometric data 
0.03 0.17 31.33 -7.17 21.98 22 

MPC derived from a S2 image  0.03 0.12 22.09 1.85 16.63 182 

 

Table 41 - Error metrics for vegetation percent cover (VPC) CoastObs product 

Table 21 

Product R2 slope RMSE Bias MAE N 

VPC derived from hyperspectral 

in situ radiometric data 
0.54 0.47 35.49 32.90 28.68 22 

VPC derived from S2 simulated in 

situ radiometric data 
0.54 0.46 38.82 31.85 32.31 22 

VPC derived from a S2 image  0.14 0.18 34.52 20.81 29.01 182 
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Figure 68 - Validation stations sampled in the Glénan Archipelago during July/2019 

 

Figure 69 -  Example map of seagrass percent cover CoastObs product for 06.07.2019 
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Figure 70 -  Example map of macroalgae percent cover CoastObs product for 06.07.2019 

 

Figure 71 -  Example map of vegetation percent cover CoastObs product for 06.07.2019 
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3.2.2 Phytoplankton Size Classes (PSC) 

The validation results for two models for phytoplankton size class (PSC) are presented here.  

The first is an abundance-based approach, and this method is described in detail in the 

Phytoplankton Size Classes Product Documentation (D 3.4).   The second is the absorption 

approach, and the datasets used, method and validation results are presented in full here. 

3.2.2.1 Abundance approach 

The Sentinel-3 model for Chl-a outperformas Sentinel-2 Chl-a, therefore the validation results 

for a PSC model for Sentinel-3 only is presented here.  Furthermore, the best-performing Chl-a 

model for each region (Vigo and Venice; see Section 3.1.2) is carried forward for the abundance-

based PSC model. 

 

   

Figure 72 -  Validation scatterplot(s) for the Abundance-based PSC CoastObs product, 

indicating R2 and linear regression fit for the Vigo 2018 dataset for C1 

(picophytoplankton), C2 (nanophytoplankton) and C3 (microphytoplankton) Chl-a (note 

there were no picoplankton present in 2018). 

   

Figure 73 -  Validation scatterplot(s) for the Abundance-based PSC CoastObs product, 

indicating R2 and linear regression fit for the Venice 2018 dataset for C1 

(picophytoplankton), C2 (nanophytoplankton) and C3 (microphytoplankton) Chl-a 



  
 
 

 

 105 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

The validation error metrics for the abundance-based PSC model are presented in Table 42.  

We note that further validation is required to increase confidence in this product, and the 

fractionated Chl-a samples from the Venice and Vigo 2019 campaigns will be used for this 

purpose once the HPLC laboratory analysis is complete (oustanding at the time of writing).   

Overall, the abundance-based PSC model performs poorly for the pico-phytoplankton size class 

in both regions.  In Vigo, this is likely due to the absence or extremely low abundance of pico-

phytoplankton in the community, therefore there are at present no data to validate this 

product.  However, we can expect that if the model works well for the two larger size classes, 

it will likely be reasonable for the pico-phytoplankton abundance.  In contrast, the Venice model 

performs reasonably for the nano-phytoplankton size class, however poorly for the pico- and 

micro-phytoplankton size classes.  This is likely simply due to the small validation dataset at this 

stage and low variability within the Venice 2018 dataset.  Again, validation with 2019 data 

should help to improve this issue. 

 

Table 42 – Error metrics for Abundance-based PSC CoastObs product 

   

Region Product R2 slope RMSElog Biaslog MAElog MAPE % N 

Ria de Vigo, 

Spain 

Pico-phytoplankton 

(C1)* 
NA NA NA NA NA NA 0 

Nano-phytoplankton 

(C2) 
0.608 0.680 0.494 -0.313 0.329 222 

7 

Micro-phytoplankton 

(C3) 
0.505 0.453 0.327 -0.134 0.197 96.0 

5 

Venice 

Lagoon and 

Adriatic Sea, 

Italy 

Pico-phytoplankton 

(C1) 
0.0055 0.0906 0.106 -0.0944 0.0944 25.1 

8 

Nano-phytoplankton 

(C2) 
0.365 0.391 0.0617 0.0447 0.0578 12.5 

8 

Micro-phytoplankton 

(C3) 
0.0366 -0.0954 0.0965 -0.0172 0.0769 18.3 

8 

* Note there were no pico-phytoplankton present in in situ samples for the Vigo 2018 dataset, therefore 

validation results cannot be presented at this time. 

An example 3-class PSC map for the Vigo region is shown for 8th July in Figure 74, 

demonstrating the relative abundance of each size class (%). 
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Figure 74 -  Example map of Abundance-based 3-class PSC products for the Galician 

coastal waters, Spain (8 July 2018) 

 

3.2.2.2 Absorption approach 

3.2.2.2.1 Absorption-based PSC model 

To determine the PSC with phytoplankton absorption, an analytical model (Roy et al., 2013) 

that computes the exponent of phytoplankton size spectrum from aph at the red peak (676 nm) 

was applied to retrieve the fractionated Chl-a in the three size class of phytoplankton. Here 

phytoplankton cells are treated as homogeneous spheres. For a ray of light passing through the 

center of the spherical cell, the dimensionless optical thickness ρc can be expressed as a 

function of the cell diameter D (in m) and the absorption coefficient of the cell material acm:  

𝜌𝑐 = 𝐷 × 𝑎𝑐𝑚      Equation 19 

Then, the dimensionless absorption efficiency Qa of a cell defined as the ratio of the light 

absorbed by the cell to the light incident on it, can be expressed as a function of optical 

thickness ρ:  

𝑄𝑎(𝜌𝑐) = 1 + 2
exp(−𝜌𝑐)

𝜌𝑐
+ 2

exp(−𝜌𝑐)−1

𝜌𝑐
2        Equation 20 

and the Chlorophll-specific absorption coefficient of phytoplankton cells with diameter D, a*chl 

(λ, D), in suspension in water can be written as:  

𝑎𝑐ℎ𝑙
∗ (𝜆, 𝐷) =

3𝑎𝑐𝑖
∗ 𝑄𝑎(𝜌𝑐)

2𝜌𝑐
      Equation 21 

Here a*ci (in m2/(mg Chl-a)) is the specific absorption coefficient of Chl-a inside a cell. Because 

Chl-a is known to be responsible for most of the phytoplankton absorption at the red peak 

around 676 nm, it is assumed that the contribution to total phytoplankton absorption from 
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substances other than Chl-a is negligible at this wavelength (Roy et al., 2011). In other words, 

a*ci (676) =a*cm(676). In laboratory cultures, the magnitude of a*ci at 676 nm has been 

measured in the range of [0.025, 0.028] m2/(mg Chl-a) (Roy et al., 2011). Considering the 

specific absorption coefficient of Chl-a (a*ci) should be maximum when it is unpackaged, usually 

the maximum of the reported values, say 0.028 m2/(mg Chl-a), would be chosen in the 

implementation. And 𝑎𝑐𝑚 (676) = 𝑎𝑐𝑖 (676) =  a𝑐𝑖
∗ ∗ 𝑐𝑖, where the intercellular concentration 

of Chl-a ci (in mg Chl-a /m3) can be expressed as a function of cell size D:  

c𝑖 = c0 × D−m      Equation 22 

Hence, ρc(676) can be given by: 

𝜌𝑐(676) = a𝑐𝑖
∗ (676) × 𝑐0 × 𝐷1−𝑚      Equation 23 

where the parameters c0 = 3.9*106 (mg Chl-a /m2.94), m = 0.06 (dimensionless) estimated by 

Roy et al. (2011) based on the numerical relationship between the cell volume and the 

concentration of Chl-a per cell.  

And assuming the size distribution of phytoplankton follows the power law, the differential 

number concentration N of phytoplankton cells per unit volume of seawater with a particle 

diameter of D can be given by:  

N(D) = 𝑘𝐷−𝜉    Equation 24 

Where 𝜉 is the exponent of the phytoplankton size spectrum, k is a constant. Hence, the total 

number (N) of cells per unit volume of seawater within a given diameter range can be calculated 

by integrating the above equation in the diameter range [Dmin, Dmax]: 

N =  ∫ [(𝑘𝐷−𝜉)]
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷 = 𝑘

𝐷𝑚𝑎𝑥
1−𝜉

−𝐷𝑚𝑖𝑛
1−𝜉

1−𝜉
    Equation 25 

The total volume (V) of particles within the same diameter range can be calculated as follows: 

V =  ∫ [(
𝜋

6
𝐷3)(𝑘𝐷−𝜉)]

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷 = (

𝜋

6
𝑘)

𝐷𝑚𝑎𝑥
4−𝜉

−𝐷𝑚𝑖𝑛
4−𝜉

4−𝜉
    Equation 26 

Hence, the concentration of Chl-a, B (mg/m3), of the population within the diameter range 

[Dmin, Dmax] can be expressed as follows: 

B =  ∫ [(
𝜋

6
𝐷3)(c0D−m)(𝑘𝐷−𝜉)]

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷 = (

𝜋

6
𝑘𝑐0)

𝐷𝑚𝑎𝑥
4−𝜉−𝑚

−𝐷𝑚𝑖𝑛
4−𝜉−𝑚

4−𝜉−𝑚
      Equation 27 

The absorption coefficient of phytoplankton (assuming Chl-a is the only absorbing pigment) at 

676 nm, achl(676), is the product of the concentration of Chl-a, B mg/m3, and the Chl-a specific 

absorption a*chl (λ) (in m2/mg): 

𝑎𝑐ℎ𝑙(λ) = 𝑎𝑐ℎ𝑙
∗ (𝜆) × 𝐵   Equation 28 
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Then the total absorption by Chl-a at 676 nm due to the phytoplankton cells in the diameter 

range [Dmin, Dmax] can be derived as follows: 

𝑎𝑐ℎ𝑙(676) =  ∫ [(
𝜋

6
𝐷3) (c0D−m)(𝑘𝐷−𝜉) × 𝑎𝑐ℎ𝑙

∗ (676, 𝐷)]
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷    Equation 29 

Thus, a*chl(676) can be derived as follows: 

𝑎𝑐ℎ𝑙
∗ (676) =  

𝑎𝑐ℎ𝑙(676)

𝐵
=

4−𝜉−𝑚

𝐷𝑚𝑎𝑥
4−𝜉−𝑚

−𝐷
𝑚𝑖𝑛
4−𝜉−𝑚 ∫ [(𝐷3−𝜉−𝑚) × 𝑎𝑐ℎ𝑙

∗ (676, 𝐷)]
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷   Equation 30 

where 𝑎𝑐ℎ𝑙
∗ (676, 𝐷) can be calculated using Qa calculated. 

On the other hand, 𝑎𝑐ℎ𝑙
∗ (676) can be derived from the absorption coefficient of phytoplankton 

𝑎𝑐ℎ𝑙(λ) and the derived concentration of Chl-a B using Eq. (11), hence 𝜉 can be calculated with 

a given 𝑎𝑐ℎ𝑙
∗ (676). 

Once the exponent of the phytoplankton size spectrum 𝜉 is derived, it can be used to calculate 

the fractions of Chl-a in any given diameter range. For instance, the ranges of cell diameters for 

picoplankton, nanoplankton, microplankton are given by [D0, D1], [D1, D2], [D2, D3], then the Chl-

a fractions of the three size classes can be derived as follows: 

𝐹𝑝 =
𝑃𝑖𝑐𝑜 𝐶ℎ𝑙𝑎

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑎
=

𝐷1
4−𝜉−𝑚

−𝐷0
4−𝜉−𝑚

𝐷3
4−𝜉−𝑚

−𝐷0
4−𝜉−𝑚  

𝐹𝑛 =
𝑁𝑎𝑛𝑜 𝐶ℎ𝑙𝑎

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑎
=

𝐷2
4−𝜉−𝑚

−𝐷1
4−𝜉−𝑚

𝐷3
4−𝜉−𝑚

−𝐷0
4−𝜉−𝑚  

                               𝐹𝑚 =
𝑀𝑖𝑐𝑟𝑜 𝐶ℎ𝑙𝑎

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑎
=

𝐷3
4−𝜉−𝑚

−𝐷2
4−𝜉−𝑚

𝐷3
4−𝜉−𝑚

−𝐷0
4−𝜉−𝑚         Equation 31 

3.2.2.2.2 Retreiving aph from remote-sensing reflectance 

Whereas the absorption-based PSC model need to be applied to satellite data, one critical step 

before the implimentation is to obtain aph from satellite data. aph can be derived from Rrs using 

different IOP inversion algorithms (IOCCG, 2006).  

The Quasi-Analytical Algorithm version 6 (QAAv6) (Lee, 2014; Lee et al., 2002) was first tested 

for aph derivation for datasets collected at Venice lagoon and Ria de Vigo in 2018. The in situ Rrs 

measured by TriOS was fed into QAAv6 to assess the algorithm performance at 443 and 676 

nm. Results showed the QAAv6 algorithm performs generally well in retrieving aph for both 

Venice lagoon and Ria de Vigo with MAPE less than or around 30%. However, the performance 

of the QAAv6 algorithm was poor when apply it to S3-derived Rrs for the derivation of aph. That’s 

probably because the QAA algorithm highly relies on Rrs at blue bands (i.e 412, 443 nm), but the 

atmospheric correction methods always bring large uncertainties for bands at this region.  
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Then an alternative IOP inversion algorithm suggested by Gons et al. (2005, 2008) was tested 

and optimized to fit the datasets in Venice and Vigo. This algorithm starts with an approximation 

of remote-sensing reflectance as follows: 

𝑅𝑟𝑠(0, 𝜆) =
𝐶× 𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
     Equation 32 

where C is the scaling factor depending on incident light. The ratio of Rrs at near-infrared band 

(i.e. 709 nm) to the red band (i.e. 676 nm) has been proved to be useful for retrieval of Chl-a 

and aph in relatively turbid and eutrophic waters. The reflectance ratio R for 709 nm and 676 

nm can be expressed as follows: 

𝑅 =
𝑏𝑏(709)

𝑏𝑏(676)
×

𝑎(676)+𝑏𝑏(676)

𝑎(709)+𝑏𝑏(709)
   Equation 33 

Absorption can be partitioned among phytoplankton (aph), water (aw), detrital and gelbstoff 

(adg). Two simplifications are then made (i) for λ = 676 nm, absorption other than by Chl-a and 

water is negligible; (ii) for λ = 709 nm, absorption other than by water is negligible. Hence, 

aph(676) can be written as follows: 

𝑎𝑝ℎ(676) =
𝑏𝑏(676)

𝑏𝑏(709)
× 𝑅 × (𝑎𝑤(709) + 𝑏𝑏(709)) − 𝑏𝑏(676) − 𝑎𝑤(676)  Equation 34 

Here Gons et al. (2005, 2008) takes bb as wavelength independent and it can be estimated using 

the band centered at 754 nm: 

𝑏𝑏 =
1.61 𝑅𝑟𝑠(754)

0.082−0.6𝑅𝑟𝑠(754)
   Equation 35 

So Eq. (17) can be further simplified: 

𝑎𝑝ℎ(676) = 𝑅 × (𝑎𝑤(709) + 𝑏𝑏) − 𝑏𝑏 − 𝑎𝑤(676)  Equation 36 

However, with these simplifications, the derived 𝑎𝑝ℎ(676)  can often be negative for less 

eutrophic and turbid waters. That’s because (i) the red Chl-a absorption peak may be 

overwhelmed by water absorption when the contribution of Chl-a is not significant; (ii) the bb 

is not wavelength independent for less turbid waters. Therefore, an empirical scale factor f is 

put into the equation to compensate the spectral shape of 𝑏𝑏 and amplify the Chl-a signal, so 

that 𝑎𝑝ℎ(676) can be derived using the Gons modification algorithm (we term it as Gons-m 

hereafter): 

𝑎𝑝ℎ(676) = 𝑓 × 𝑅 × (𝑎𝑤(709) + 𝑏𝑏) − 𝑏𝑏 − 𝑎𝑤(676)    Equation 37 

Here the dimensionless scale factor f = 1.3, which is derived by fitting into the S3 datasets in 

Venice and Vigo. More work will be done in the future to justify this scale factor.  
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3.2.2.2.3 Performance of CoastObs absorption-based PSC model 

The Gons-m algorithm was applied to the S3 Rrs datasets (produced by C2RCC processor) at 

Venice and Vigo for the derivation of aph. Lab measured aph from Venice and Vigo collected in 

2018 was determined by the spectrophotometric method with IS-mode (IOCCG, 2018) and was 

then used for validation. Figure 75 presents the scatterplots of the satellite modelled aph versus 

lab measured aph and indicates the improved performance for the derivation of aph(443)  and 

aph(674) using the Gons-m algorithm (MAPE < 40%, R2 = 0.38-0.50). Note that the 𝑎𝑝ℎ(443) 

were calculated from Gons-m derived 𝑎𝑝ℎ(674) using the empirical model (Lee et al., 1998) 

tuned by the Venice and Vigo in situ datasets respectively. 

For the PSC fraction model, the above-mentioned aph(674) was input. The other model input 

parameter, total Chl-a concentration, was derived using the optimized CI and NDCI models for 

Venice and Vigo respectively. The model derived Chl-a fractions in the three phytoplankton size 

class are shown in Figure 76 - Validation scatterplots of CoastObs absorption-based PSC 

products in Ria de Vigo and Venice Lagoon. (a) Pico-phytoplankton Chl-a, (b) Nano-

phytoplankton Chl-a, (c) Micro-phytoplankton Chl-a.Figure 76. Table 43 presents the error 

metrics for absorption-based PSC CoastObs product. It indicates good agreements between the 

model derived and in situ measured values, particularly for nano-phytoplankton and pico-

phytoplankton (MAPE < 41%). The overestimation of micro-phytoplankton Chl-a in Venice is 

probably because the lack of micro-phytoplankton in the studied area, but this analytical PSC 

model assumes the size distribution of phytoplankton follows the power law in the range of 

0.2-50 µm. Further observations and studies are expected to improve the phytoplankton size 

distribution model. We note that the fractionated Chl-a and aph samples collected in 2019 will 

be further used to validate the models used here when the HPLC analysis results are available.  

 

 

Figure 75 - Validation scatterplots of S3 derived aph using C2RCC & Gons-m algorithm, 

indicating the R2 and linear fit for the Venice and Vigo 2018 datasets. (a) aph(443), (b) 

aph(674). 
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Figure 76 - Validation scatterplots of CoastObs absorption-based PSC products in Ria de 

Vigo and Venice Lagoon. (a) Pico-phytoplankton Chl-a, (b) Nano-phytoplankton Chl-a, 

(c) Micro-phytoplankton Chl-a. 

 

Table 43 - Error metrics for absorption-based PSC CoastObs product  

   

Region Product R2 slope RMSElog Biaslog MAElog 
MAPE 

% 
N 

Ria de Vigo, 

Spain 

Pico-phytoplankton 

Chl-a * 
NA NA NA NA NA NA 0 

Nano-phytoplankton 

Chl-a 
0.95 0.61 0.186 0.005 0.173 32.6 5 

Micro-phytoplankton 

Chl-a 
0.70 1.11 0.142 0.033 0.118 29.8 4 

Venice Lagoon 

and Adriatic Sea, 

Italy 

Pico-phytoplankton 

Chl-a 
0.14 0.87 0.127 -0.087 0.095 18.3 8 

Nano-phytoplankton 

Chl-a 
0.25 0.24 0.234 -0.229 0.229 40.6 8 

Micro-phytoplankton 

Chl-a 
0.13 0.47 0.470 0.464 0.464 195.5 8 

* Note there were no pico-phytoplankton present in in situ samples for the Vigo 2018 dataset, therefore 

validation results cannot be presented at this time. 
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3.2.3 Primary Production (PP) 

The data and method for this product was presented in the Primary Productivity Product 

Documentation (D 3.5), however additional data and methods are presented with regard to fast 

repetition rate fluorometry method for for in situ PP measurements made in 2019. 

3.2.3.1 In situ data and methods 

Primary productivity data were validated using in situ data measured by the fast repeitition rate 

fluorometry (FRRf) method in the Venice and Vigo regions in summer 2019.  Photosystem II 

(PSII) variable chlorophyll fluorescence parameters were measured using an Act2 laboratory 

system (Chelsea Technologies Ltd.), which illuminates samples in a series of steps to measure a 

fluorescence light curve (FLC). The excitation wavelengths of the Act2 light emitting diodes 

(LEDs) were 450, 530 and 624 nm (white).  The Act2 instrument was used with a saturation 

phase comprising 100 flashlets an a 2µs pitch, with sample temperature maintained by a chiller 

to the in situ measured temperature.  An aliquot of the sample was first run in automatic mode 

(Auto-FLC on), then a second aliquot was run in manual mode (Auto-FLC off) using the 

maximum energy (E) derived from automatic mode.  IN this way, we ensured maximum 

fluorescence was reached.  The minimum (F0) and maximum (Fm) fluorescence were estimated 

by the Act2Run software (Chelsea Technologies Ltd) using the equations from in Kolber et al. 

(1998), while secondary analysis of FRRf and FLC data was based on the absorption method 

described by Oxborough et al. (2012). 

Using the PSII electron flux calculated on a volume basis (JVPSII; mol e- m-3 day-1) derived from 

the absorption algorithm, the FRRF-based carbon (C) fixation rates (PCFRRf; mg C m-3 h-1) were 

calculated as follows: 

𝑃𝐶𝐹𝑅𝑅𝑓(𝑚𝑔 𝐶 𝑚−3ℎ−1) =  𝐽𝑉𝑃𝑆𝐼𝐼/24 × φ𝐸:𝐶 × 𝑀𝑊𝐶 × 1000   Equation 38 

where  φ𝐸:𝐶  is the electron requirement for carbon fixation (mol e- mol C-1), MWc is the 

molecular weight of carbon (12.0107 g mol-1), 24 is the conversion from days to hours, and 

1000 is the conversion from grams to milligrams carbon.  This method to derive carbon fixation 

rates was also employed in the coastal waters of the western English Channel (Keys et al., 2018) 

and Australia (Robinson et al. 2014).  Chl-a specific carbon fixation rates were then calculated 

by dividing PC by the measured Chl-a concentration at each station (analysis by higher 

performance liquid chromatography; HPLC). 

The value implemented for  φ𝐸:𝐶  was 20 mol e- mol C-1 for both the Venice and Vigo datasets, 

slightly higher than the mean for a range of datasets found in Lawrenz et al. (2013; 10.3 mol e- 

mol C-1 ).  There is ongoing research into the variability of φ𝐸:𝐶, as it can vary as a function of 

the prevailing phytoplankton taxa present (Suggett et al. 2009; Robinson et al. 2014) or 

environmental conditions, including temperature, photosynthetically available radiation and 
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nutrient availability (Lawrenz et al. 2013; Hughes et al, 2018; Zhu et al., 2019).  As we were 

unable to measure this parameter during the CoastObs field campaigns, we have made the best 

use of literature in order to define this parameter and calculate PP from the Act2 FRRf data.  

Recent studies indicate higher φ𝐸:𝐶  is correlated with higher mean daily PAR (E0) (Zhu et al., 

2019)  and warmer, more nutrient-rich waters (Lawrenz et al., 2013).  As the Vigo and Venice 

2019 datasets were collected in coastal regions during the summer period, it is expected these 

conditions would be linked to a higher φ𝐸:𝐶.  Furthermore, higher φ𝐸:𝐶  values have been found 

where more large phytoplankton cells are present (>10 µm Chl-a), and lower φ𝐸:𝐶  values where 

pico-phytoplankton biomass is high (Hughes et al., 2018).  Although we do not yet have cell size 

data available for Vigo and Venice 2019, in 2018 nano- + micro-phytoplankton comprised 81-

100% of the samples and there were a higher proportion of micro-phytoplankton present in 

Vigo than Venice (37% versus 15%, respectively).  Again, this suggests a higher φ𝐸:𝐶  parameter 

should be used for the Venice and Vigo 2019 dataset, with perhaps a greater electron 

requirement for carbon fixation in Vigo than Venice.  This is certainly an area for future research 

and further investigation into the natural variability of φ𝐸:𝐶 is required.  However, at this stage, 

we have employed a parameterisation of  φ𝐸:𝐶   to the best of our knowledge given the data 

and research available. 

The maximum photosynthetic rates (Pmax; mg C (mg Chl-a)-1 h-1), light utilisation efficiency (α; 

mg C (mg Chl-a)-1 h-1) and the light saturation point of photosynthesis (Ek; µmol photons m-2 s-

1) can be derived by fitting the Photosynthesis-Irradiance (P-E) curves to the Act2 data (PCFRRf 

and E) for each station.  In the case of the hyperbolic tangent model of Platt, Gallegos and 

Harrison (1980), the photosynthetic rate at saturation (Ps; mg C (mg Chl-a)-1 h-1) is determined 

rather than Pmax, however if there is no inhibition these two parameters coincide.  Additionally, 

the Platt et al (1980) model parameterises β, which characterises the photoinhibition effect, as 

opposed to deriving Ek.  In addition to the benefit that it characterises photoinhibition, the Platt 

et al (1980) model has previously been applied to coastal waters in other studies (e.g. Robinson 

et al. 2014; Silsbe and Kromkamp, 2012).  Thus, the Platt et al. (1980) model was implemented 

for the Act 2 data, as follows: 

𝑃𝐶𝐹𝑅𝑅𝑓 (𝐸) = 𝑃𝑠  × (1 − exp(−𝛼 × 𝐸/𝑃𝑠))  × exp (−𝛽 × 𝐸/𝑃𝑠)  Equation 39 

 

Kd(PAR) and the mean daily sea surface PAR (E0) were measured at each station, as detailed in 

Sections 3.1.5 and 0, respectively.  Assuming in situ Chl-a concentrations were uniform 

throughout the water column, the phytoprod() function in R (phytotools package) was used to 

model the depth integrated primary productivity (PPeu; mg C m-2 day-1) as a function of  Kd(PAR), 

E0, Chl-a and max depth.  If the maximum depth was less than the euphotic depth, the 

maximum depth was used for integration. 
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3.2.3.2 Performance of in situ m2VGPM 

The m2VGPM model is a modified version of the Vertically Generalized Production Model 

(Behrenfeld and Falkowski, 1997), and is described in detail in the Primary Productivity product 

documentation (D3.5).  The model is as follows: 

PPeu = 0.66125*(PBopt)*(E0/(E0+4.1))*Zeu* Chl-as*Dirr  Equation 40 

The parameters for the in situ m2VGPM were defined as follows: 

- PB
opt = maximum C fixation rate (mg C mg Chl-a -1 h-1), modelled as a function of 

temperature (T) according to the General Lakes 3rd order polynomial function (INFORM 

project): 

𝑃𝑜𝑝𝑡
𝐵 = 0.00137𝑇3 − 0.048𝑇2 + 0.6044𝑇 + 0.159  Equation 41 

- E0 = in situ daily sea surface photosynthetically available radiation (PAR; E m-2), modelled 

from surface rates (E m-2 s-1) using the incident() function in R  

- Zeu = euphotic depth (m) calculated from in situ Kd(PAR) profiles (Kirk, 1994) 

- Chl-as = surface Chlorophyll-a concentration measured by HPLC 

- Dirr = daily photoperiod, calculated as a function of latitude and day of year using 

geosphere package in R. 

In order to first test the results of the in situ model, the m2VGPM PPeu values were compared 

to the PPeu data measured in situ by the Act2, with the scatterplots are shown in Figure 77. 
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Figure 77 -  Validation scatterplot for in situ m2VGPM depth integrated Primary 

Productivity (PPeu) as a function of Act2 Primary Productivity, indicating R2 and linear 

regression fit 

Table 44 - Error metrics for in situ m2VGPM PPeu 

   

Region Product R2 slope RMSElog Biaslog MAElog MAPE % N 

Ria de Vigo, 

Spain 

Primary Productivity, 

PPeu (mg C m-2 day-1) 
0.867 0.210 0.338 0.0718 0.274 59.1% 42 

Venice 

Lagoon, Italy 

Primary Productivity, 

PPeu (mg C m-2 day-1) 
0.994 0.103 0.523 0.482 0.482 63.4% 

25 

All data Primary Productivity, 

PPeu (mg C m-2 day-1) 
0.991 0.104 0.463 0.329 0.405 61.8% 

67 

 

It is clear that the the electron uptake requirement ( φ𝐸:𝐶 ) has a large influence on the 

conversion of Act2 FRRf data to carbon-fixation rates, and that this requires further research to 

better characterise this parameter and improve use of FRRf for in situ PP measurements. 

However, the high coefficient of determination (R2) between Act2 and m2VGPM PPeu indicates 

a good correlation between in situ and modelled data.  Therefore we have confidence in using 

the m2VGPM for satellite data to derive PPeu. 
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3.2.3.3 Satellite data and methods 

The satellite derived data for use in testing the m2VGPM are as follows: 

Sentinel-3 OLCI data 

Level 1 full resolution (L1 FR) Sentinel-3 OLCI data were atmospherically corrected with the 

C2RCC processor.  Cloud, land and coastline pixels were removed using the Idepix flags.  

Matchups with in situ PPeu data were extracted +/-1 day of the satellite overpass for the 2019 

dataset.   

Chlorophyll-a (Chl-a) 

The best performing Sentinel-3 OLCI Chl-a algorithm for the 2019 Vigo and Venice data was 

implemented in the satellite PP model (Normalised Difference Chlorophyll Index, NDCI; Mishra 

& Mishra, 2012).  For 2018 Chl-a validation results see Section 3.1.2.  We note that a different 

tuning was required for the 2019 dataset, which is due to the change in L1 processing 

impelemented by ESA in between the 2018 and 2019 datasets 

(https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/processing-

baseline).  A new radiometric gain model was implemented on 10-Apr-2019, therefore a new 

tuning of the Chl-a was required as the 2018 model performed poorly (data not shown).   The 

NDCI Chl-a validation results for 2019 are shown below for same-day matchups (Figure 78 and 

Table 45). 

 

Figure 78 -  Validation scatterplot for S3 NDCI Chl-a product tuned with the Vigo and 

Venice 2019 dataset, indicating R2 and linear regression fit 

 

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/processing-baseline
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/processing-baseline
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Table 45 - Error metrics for 2019 NDCI Chl-a product 

        

Region R2 slope RMSElog Biaslog MAElog MAPE % N 

Ria de Vigo, 

Spain 
0.770 0.770 0.300 0.00278 0.239 64.4% 21 

Venice 

Lagoon, Italy 
0.868 0.868 0.286 -0.0777 0.215 69.0% 

9 

All data 0.874 0.874 0.296 -0.0214 0.232 65.8% 30 

 

 

Sea Surface Temperature (SST) data were acquired for use in the satellite primary production 

product.  These data were downloaded on 27/9/2019 from the GHRSST 

(https://www.ghrsst.org/ghrsst-data-services/products/).  SST data were provided as a L4 

gridded product, which is generated by combining complementary satellite and in situ 

observations within Optimal Interpolation systems.  Validation results for the SST product are 

shown in Section 3.1.4.   

Euphotic Depth (Zeu) was derived from the Sentinel-3 C2RCC product as an exponential function 

of the ratio between Rrs at 560 and 490 nm.  Validation results for Zeu are provided in Section 

3.1.5. 

Daily irradiance (E0) were acquired from the EUMETSAT data centre 

(https://archive.eumetsat.int/usc/) on 03/10/2019 from SEVIRI onboard the geostationary 

satellite Meteosat (9/10/11).  The SSI (Shortwave solar irradiance) product was tuned to the 

2019 in situ dataset as follows.  See Section 0 for E0 validation results. 

Thus, the parameters for the satellite m2VGPM were defined as follows: 

- PB
opt = maximum C fixation rate (mg C mg Chl-a-1 h-1), modelled as a function of the 

GHRSST L4 temperature (T) according to the General Lakes 3rd order polynomial 

function (INFORM project): 

𝑃𝑜𝑝𝑡
𝐵 = 0.00137𝑇3 − 0.048𝑇2 + 0.6044𝑇 + 0.159 Equation 42 

- E0 = in situ daily sea surface photosynthetically available radiation (PAR; E m-2), derived 

from Meteosat SSI data 

- Zeu = euphotic depth (m) derived from Sentinel-3 C2RCC product 

- Chl-as = satellite Chlorophyll-a concentration derived from Sentinel-3 C2RCC product 

https://www.ghrsst.org/ghrsst-data-services/products/
https://archive.eumetsat.int/usc/
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- Dirr = daily photoperiod, calculated as a function of latitude and day of year using 

geosphere package in R (note this is not a satellite derived parameter) 

 

3.2.3.4 Performance of satellite m2VGPM 

Results for the satellite m2VGPM are shown in Figure 79, with errors presented in Table 46.  

Overall, the satellite model performed well when compared to in situ PP derived from FRRf 

(Act2).  However, again, we emphasize that the in situ FRRf results require further investigation 

with regard to better characterising the φE:C  parameter for each region.  Furthermore, for 

application of this model to other regions, it is of importance to ensure the Chl-a algorithm 

performs well, as this could propagate error towards the satellite derived PPeu.  We also note 

there is a relatively small matchup dataset (n=21), as we were limited to the data collected 

during the 2019 field campaigns.  Thus, we intend to collect in situ FRRf PP measurements in 

the Netherlands coastal waters during 2020 to increase our confidence in this product and the 

sample size. 

 

 

Figure 79 -  Validation scatterplot for the Primary Productivity (PPeu) CoastObs product, 

indicating R2 and linear regression fit (note for Act2 in situ PP,  φE:C= 20 mol e- mol C-1). 
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Table 46 - Error metrics for satellite m2VGPM PPeu product (2019 dataset) 

  

Product R2 slope RMSElog Biaslog MAElog 
MAPE 

(%) 
N 

Ria de Vigo, Spain 0.881 0.103 0.545 0.444 0.466 59.3% 12 

Venice Lagoon and 

Adriatic Sea, Italy 
0.805 0.241 0.415 0.121 0.365 81.4% 

9 

All 0.663 0.134 0.494 0.306 0.423 68.8% 21 

 

An example map of PP derived from the S3 C2RCC OLCI, Meteosat and GHRSST datasets is 

shown in Figure 80.  Each satellite product was reprojected to UTM/WGS84, and the Metosat 

and GHRSST datasets were resampled to a 348m pixel size to match the S3 OLCI dataset.  PPeu 

was calculated with the m2VGPM, using the bandmath function in SNAP v.6.0. 

 

Figure 80 -  Example map of PPeu CoastObs product for the Venice Lagoon, Italy, 

16.07.2019 
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3.2.4 Harmful Algal Blooms and Indicator Species (HABs) 

Data and methods for HABs products were presented in the Harmful Algae Bloom Species 

Product Documentation (D 3.6). Species indicators were developed for two taxonomic groups: 

Pseudo-nitzschia spp. and Alexandrium minutum. 

Species indicators for Alexandrium minutum based on Sentinel-2 and Sentinel-3 images were 

developed and validated using a dataset between May and August 2018 (see D 3.6 for details). 

Data of this species after August 2018 were not available for further validation, and hence it 

was not included in this deliverable.  

The species indicator for Pseudo-nitzschia spp. is based on a Support Vector Machine (SVM) 

“bloom”/”no bloom” probability model developed using a match-ups dataset consisting of 383 

data points from 34 Sentinel-3 images between May 2016 and November 2018. It contains 67 

“bloom” situations and 316 “no bloom”.   

Abundance of Pseudo-nitzschia spp. between December 2018 and April 2019 were available for 

further validation from the INTECMAR monitoring program. Unfortunately, although 

abundances lower than 105 cell/L were detected (in 51 of 168 data points), only there were two 

blooms (abundances greater than 105 cell/L).  

After the match-ups analysis, only 32 valid data points, all “no bloom”, were available. The 

application of the Pseudo-nitzschia spp. species indicator produced a perfect result, i.e. 32 of 

32 data points were correctly classified as “no bloom”.  

Table 47 - A confusion matrix indicating instances of true positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN). It was obtained applying the Pseudo-

nitzschia spp. indicator to the complete dataset (development + test).  

  Actual Class (in situ data) 

  Bloom No bloom 

Predicted 

Class 

(EO data) 

Bloom 62 15 

No bloom 5 333 

 

Table 47 shows the confusion matrix obtained from applying the Support Vector Machine 

(SVM) probability model to the complete dataset, including the development dataset (67 

“bloom”/316 “no bloom”) and the independent test dataset (32 “no bloom”). Note that metrics 

were not computed from the test dataset because it only contains “no bloom”. Since probability 
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outputs (between 0 and 1) are used, the confusion matrix was obtained using an optimal 

threshold maximizing the sum TPR + TNR. 

Table 48 shows the error metrics for the Pseudo-nitzschia spp. indicator computed from the 

cross-validation process (see D 3.6) and from the development and complete (development + 

test) datasets.  Results are quite similar evidencing the robustness of the model.  Note that the 

complete dataset includes 32 extra ”no bloom”, which are correctly classified leading to a slight 

improvement of FNR and kappa.  

Table 48 - Error metrics for the Pseudo-nitzschia spp. indicator 

  

Datasets TPR FNR 
Overall 

Accuracy 
Kappa AUC 

Cross-Validation 0.90 0.10 0.90 0.87 0.95 

Development 0.93 0.05 0.95 0.94 0.97 

Development + Test 0.93 0.04 0.95 0.95 0.97 

 

Although this species indicator requires a further validation using an independent test dataset 

including blooms, the model is very robust and produces reliable results with a good balance 

between TPR and FPR, i.e. it is able to identify correctly more than 90% of blooms with a false 

alarm rate lower than 5 %.  

Figure 81 shows an example of a bloom probability map obtained using the Pseudo-nitzschia 

spp. indicator.  

 

Figure 81 -  Bloom probability map on 1 August 2018 obtained using the Pseudo-

nitzschia spp. indicator. 
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3.3 Higher level products 
The CoastObs higher level products and methods were described in detail in D3.8 Higher Level 

Products Report. These include phytoplankton bloom phenology, sediment plume morphology, 

coastal erosion and accretion, water framework directive reporting, and integration of EO 

products with modelling (mussel culture potential and harmful algal bloom forecasting).  The 

foundation for these are the basic and innovative products, and these are validated in the 

previous sections, 3.1 and 3.2.  However, some additional product detail and validation results 

are presented here for the mussel culture potential higher level CoastObs product. 

3.3.1 Integration with modelling: mussel culture potential 

This higher-level product to identify the spatial temporal dynamics in mussel growth integrates 

CoastObs S3 basic products with the DEB theory, with the overall aim of predicting mussel 

culture potential in Dutch case study areas and for Dutch users to be used as a tool for 

optimization of production efficiency.  

A standard DEB model developed by Wijsman (2019) was used here, describing energy flow in 

mussels focusing on food assimilation and utilization for maintenance, growth and 

reproduction. The parameter set for Mytilus edulis specifically adapted for Dutch cultivation 

areas was also derived from Wijsman (2019). Simulations were conducted using an R-script, 

computing daily energy flows as a function of temperature (SST in degrees Celsius) and the food 

related variables Chl-a (mg.m-3) and TSM (g.m-3). From the S3 basic products, time series for 

SST, Chl-a and TSM were extracted for each pixel coordinate (resolution 300x300m) in the study 

areas Oosterschelde and western Wadden Sea. Missing values in time series resulting from 

missing images or cloud covered pixels were interpolated linearly to create a daily sequence 

and were used as forcing in the model.  

The model was run for both 2017 and 2018 from April-October, starting with mussel seed sizes 

of 3.0 and 3.6 cm for 2017 and 2018, respectively. The model was then calibrated by adjusting 

the half saturation coefficient for food uptake for the different regions within a study area (for 

workflow steps and calibration details see D3.8). A validation dataset of mussel growth 

measurements in the field was obtained from INNOPRO (2018) - funded by the European 

Maritime and Fisheries Fund - where growth of blue mussels (Mytilus edulis) was measured 

from April to October in 2017 & 2018 at 12 locations in the Wadden Sea and 12 locations in the 

Oosterschelde.  

Evaluation of goodness of fit was done by linear regression between observations in shell length 

(cm) and simulated length. The first values were excluded.  



  
 
 

 

 123 
  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 776348 

 

Figure 82 -  Validation scatterplots for modeled shell length output (cm) from the spatio 

temporal mussel growth DEB model and observed growth in the Oosterschelde estuary 

and Wadden Sea, indicating R2 and linear regression fit. Open circles represent 2017 

data, black circles 2018 data. 

 

Table 49 - Error metrics for higher level CoastObs product Spatio temporal DEB model 

for mussel growth  

 

Spatio temporal DEB 

model for mussel growth 
R2 slope RMSE_log Bias_log MAE_log 

Oosterschelde estuary 0.85 0.90 0.054 0.014 0.041 

Wadden Sea 0.82 0.86 0.068 -0.002 0.053 

 

The integration of S3 spatial raster data of food variables and water temperature with an 

existing DEB model provide promising results. With an overall R2 of 0.82 for the Wadden Sea 
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and 0.85 for the Oosterschelde estuary, the model already performs well (for error metrics see 

Table 49). 

 

Figure 83 -  Example of monthly aggregates from DEB model outputs transformed to 

relative growth rate (lenght increase in %) for the Wadden Sea in 2018 
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