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CoastObs Project  

CoastObs is an EU H2020 funded project that aims at using satellite remote 
sensing to monitor coastal water environments and to develop a user-
relevant platform that can offer validated products to users including 
monitoring of seagrass and macroalgae, phytoplankton size classes, primary 
production, and harmful algae as well as higher level products such as 
indicators and integration with predictive models. 

To fulfil this mission, we are in dialogue with users from various sectors 
including dredging companies, aquaculture businesses, national 
monitoring institutes, among others, in order to create tailored products 
at highly reduced costs per user that stick to their requirements. 
 

With the synergistic use of Sentinel-3 and Sentinel-2, CoastObs aims at 
contributing to the sustainability of the Copernicus program and assisting 
in implementing and further fine-tuning of European Water Quality 
related directive. 
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Summary 
The purpose of Work Package 3 is the development of a set of basic and innovative products 
based on Earth Observation (EO) data in order to improve monitoring of coastal water 
environments, including monitoring of harmful algae blooms (HABs). CoastObs task 3.4 aims to 
the development of a set of innovative products based on EO data for detection and monitoring 
of HABs. 

HABs are an increasingly frequent phenomenon in coastal regions around the world. HABs can 
cause ecosystem damages, since they can be toxic to human health and other organisms, as 
well as have a strong impact on human activities such as fishing and aquaculture. For example, 
in Galician coast, a site of extensive mussel culture and CoastObs study area, HABs have had an 
important ecological, economic and social impact since they are often responsible for the 
closure of the mussel farming polygons. HABs detection and monitoring is traditionally based 
on direct observations, i.e. field samplings at fixed sampling stations. As compared to traditional 
sampling methods, satellite methods are faster, more cost-effective and produce map outputs 
providing a more synoptic view of the study area with a good temporal coverage.  

The development of the EO-based products in task 3.4 is mainly focused on the three HAB taxa 
(namely Pseudo-nitzschia spp., Alexandrium minutum, Phaeocystis spp.), which are known to 
cause substantial problems in coastal waters, but also on the improvement of chlorophyll a 
(chla) retrieval algorithms. Information about these taxa is of high importance and interest for 
the CoastObs users.  

More specifically in task 3.4, we have developed a set of basic and innovative products based 
on Sentinel-2and Sentinel-3 data for the detection and monitoring of HABs in coastal waters: 

• Regional algorithms for the retrieval of chla concentration from Sentinel-3 images, 
which are aimed at the generation of accurate chla maps allowing the study of the 
temporal and spatial distribution of the phytoplankton abundance in the area. 

• Species indicators for two potentially toxic taxonomic groups: Pseudo-nitzschia spp. and 
Alexandrium minutum.  Both species indicators aim at the production of bloom 
probability maps from Sentinel-2and Sentinel-3 images. Due to the complexity of the 
Galician Case 2 waters, algorithms were mainly based on machine learning methods 
relating satellite images to in situ data. In a later stage of the project, maps products will 
also be integrated into higher-level products to improve the detection and monitoring 
of HABs in Galicia.  

• Although Phaeocystis spp. is not strictly considered to be a HAB species, it has been 
reported to cause serious ecological damages in the Southern Bight of the North Sea. A 
new product for the detection of Phaeocystis blooms has also been developed within 
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CoastObs Task 3.4. The algorithm takes into account salinity, irradiance and distance 
from coast, and is aimed at providing alerts for coastal zones or shellfish farms. In a later 
stage, it will be improved by combining it with a chlorophyll-a product or a dedicated 
optical algorithm using relevant spectral information.  

Results show that map products based on EO data can provide useful information for improving 
detection and monitoring of HABs. All the products require further validation and testing. 
Within CoastObs, products will be also evaluated and improved according to the feedback 
provided by the final users.  
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1 Introduction 
CoastObs develops a user-relevant platform that offers user-relevant innovative and higher-
level information products and coastal monitoring services. These services aim to be fully 
automated, commercial, reliable and sustainable. The validated basic and innovative products 
will be flexibly combined into higher-level products to fit the users’ information needs. 

Work Package 3 is aimed at the development of a set of services and products based on the 
combination of Earth Observation (EO) data with in situ information. Both basic products and a 
set of innovative products are being developed in accordance with users’ needs in order to 
provide them with useful information to monitor coastal water environments and deal with the 
main problems affecting the different study areas.  

Within WP3, task 3.4 is specifically aimed at the development of maps products based on 
Sentinel images that are expected to provide useful information for Harmful Algae Bloom 
(HABs) detection and monitoring in Galicia. Products include chla concentration and species 
indicators for two taxonomic groups: Pseudo-nitzschia spp. and Alexandrium minutum. The task 
also concerns the further development of an algorithm or indicator for the presence of 
Phaeocystis, a nuisance algae species occurring in the North Sea.  

1.1 Harmful algae blooms (HABs) in Galicia 
The Rias Baixas are four large V-shaped coastal embayments located on the south-west coast 
of Galicia (NW Spain) along the northern boundary of the NW African upwelling system (Figure 
1). The rias ecosystems are influenced by surface currents, strong tides, freshwater discharges 
from small rivers and the upwelling-downwelling dynamic on the adjacent continental shelf 
(Barton et al., 2015).  Upwelling events associated with northern winds, occurring mainly 
between May and September, introduce deep, cold, nutrient-rich waters into the rias and 
increase significantly the productivity (Pitcher et al., 2010). 

As a consequence of the high productivity, the area is rich in fish and shellfish resources and 
supports an intensive mussel culture using floating rafts (or bateas) organized in farming 
polygons. In fact, Galicia is the most important producer of aquaculture mussel of Europe and 
one of the world leaders (Labarta and Fernández-Reiriz, 2019). 

 HABs are a frequent and well-documented phenomenon in Galicia, where they cause an 
ecological damage, but also an important social and economic impact since they even force the 
closure of the mussel farming polygons (González Vilas et al., 2014; Rodríguez et al., 2011). 

The HABs monitoring system in Galicia is based on field samplings in fixed stations and 
subsequent cell count of toxic species using optical microscopy (Anderson, 2009). Despite of 
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direct observations are essential, different approaches incorporating satellite images have also 
been proposed. As compared to traditional sampling methods, satellite methods are faster, 
cheaper and produce map outputs providing more information about the spatial distribution of 
the HABs (Blondeau-Patissier et al., 2014; Kudela et al., 2017).   

 

 

Figure 1 – Map showing the location of the study area, with the names of the four Rias Baixas. 

After the successful results obtained using MERIS images between 2002 and 2012 (Spyrakos et 
al., 2011), CoastObs exploits the use of the new Sentinel satellites to provide useful information 
for HABs detection and monitoring in Galicia.  

Chapter 2 summarizes data and methods involved in the development of the algorithms. 
Products are presented in Chapter 3 and 4, while Chapter 5 includes a summary of their 
potential applications, considering strengths and limitations. 

1.1.1 Pseudo-nitzschia spp.  
Pseudo-nitzschia spp. is a diatom genus widely spread all over the oceans (Hasle, 2002). Some 
Pseudo-nitzschia spp. species produce domoic acid (DA), a neurotoxic amino acid which can 
cause deleterious effects to marine organisms and even humans (amnesic shellfish poisoning, 
ASP) when it is bio-concentrated via trophic transfer in the food web (Terseleer et al., 2013).  
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Pseudo-nitzschia spp. is common in upwelling systems as the Iberian System (Gonzalez Vilas et 
al., 2014). In Galicia, HAB events associated with this genus imply not only a damage to the rias 
ecosystems and a risk to human health, but also an economic impact since they can even force 
the closure of the mussel production areas (Palma et al., 2010).  

Some authors have already proposed regional-specific species indicators based on satellite data 
for Pseudo-nitzschia spp. For instance, Anderson et al. (2009) developed statistical models for 
Pseudo-nitzschia spp. abundance, particulate DA (pDA) and cellular DA (cDA) in Santa Barbara 
channel incorporating ocean colour (MODIS-Aqua and SeaWiFS) and sea surface temperature 
(AVHRR) data. In addition to chla concentration and temperature, reflectances at 410 nm, 510 
nm, 555 nm and 590 nm were also found to be related to the output parameters and included 
in the models. In Galicia, Spyrakos (2011) also found a relationship using regression analysis 
between pDA and MERIS bands at 510 nm, 560 nm and 620 nm.  

Despite of the complexity of the Galician waters, Pseudo-nitzschia spp. often dominates the 
phytoplankton community with abundances exceeding of 105 cell L-1, allowing for the possibility 
of being detected from satellite images.  

1.1.2 Alexandrium minutum 
Alexandrium minutum is a toxic dinoflagellate with many strains that produce paralytic shellfish 
toxins, and hence it implies a risk to ecosystems and human health (paralytic shellfish poisoning, 
PSP).  

Although HABs of Alexandrium minutum are not so frequent as Pseudo-nitzschia spp. blooms 
on the Galician coast, it often co-occurs with the non-toxic dinoflagellate Prorocentrum micans 
and the copepod Acartia clause in the Ria de Vigo (Frangopoulos et al., 2000). 

1.2 Phaeocystis blooms in the North Sea 
Although Phaeocystis spp. is not considered to be a harmful algal bloom (HAB) species, its ability 
to form a mucoidal colony is considered to be an ecological nuisance as it has been found to, 
inter alia, potentially increase fish mortality, reduce growth and spawning of shell fish and 
impact coastal tourism during dense blooms due to both the odorous production of 
dimethylsulfide (DMS) and the accumulation of foam on coastal areas (Davidson and Marchant, 
1992; Schoemann et al., 2005; Blauw et al., 2010). Phaeocystis has a polymorphic life cycle, 
alternating between a flagellate and colonial phase (Blauw et al., 2010). Colonies of colonial 
cells reside within a mucoidal matrix, which are commonly a main cause of foam formation 
along beaches. In the context of European coastal waters, Phaeocystis globosa has been found 
to particularly affect the Southern Bight of the North Sea (Lancelot et al., 2005; Astoreca et al., 
2009). Phaeocystis blooms that have occurred along the Dutch coastal zones have been 
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intensively studied, resulting in the availability of extensive research on the phenology of this 
phytoplankton group (Teixeira et al., 2012; Peperzak and Poelman, 2018; van der Woerd et al., 
2011 etc.). Of particular concern is the fact that Phaeocystis blooms occur along the Dutch 
coastal waters almost every year, with the uncertainty of how global warming might influence 
it in the future (Chen and Mynett, 2006). 

Prior to the formation of a bloom under certain environmental conditions, Phaeocystis exists in 
the flagellate phase before transitioning to form colonial cells (Peperzak, 2002). The onset of a 
Phaeocystis bloom typically coincides with the depletion of silica – this has been hypothesized 
to be either associated with Phaeocystis being able to outcompete silica-limited diatoms, or the 
use of diatoms as a solid substrate for the growth of colonial cells (Peperzak, 2002; Riegman 
and van Boekel, 1996). Other factors like surface irradiance and nutrients also influence the 
initiation of the bloom. However, measuring the density of Phaeocystis cells and/or the growth 
rate can be a costly method for monitoring the evolution of a bloom on a reasonably high 
spatio-temporal scale. In 2004, a Phaeocystis-dominated bloom event occurred and degraded 
within the span of 10 days (Texeira et al., 2012). Since the initiation of a bloom can be difficult 
to predict, the duration of the bloom event further restricts the ability to acquire sufficient 
water samples to monitor the evolution of the event. Remote sensing offers itself as a cost-
effective solution that is also able to improve the ability to acquire measurements at a higher 
spatio-temporal frequency, with the latest Sentinel-3 Ocean Land Colour Imaging (OLCI) 
spectrometer being able to achieve a spatial resolution of 300m and an average revisit time of 
2-3 days. Subsequently, satellite imagery has been utilized for the detection of harmful algal 
blooms (HAB) by using chlorophyll-a as a proxy, however, this has was shown to be insufficient 
as a method for specifically detecting Phaeocystis blooms. Due to the influence of other algal 
pigments on the spectral reflectance, chla alone is unable to serve as a reliable indication for 
the concentration of Phaeocystis (Kurekin et al., 2014), hence, resulting in the need to develop 
species-specific algorithms for the detection of these blooms (Astoreca et al., 2009).  

In view of the need to develop an algorithm that will aid the detection of a Phaeocystis bloom 
within the project requirements of CoastObs Task 3.4, Chapter 6 consists of a literature review 
of the species to better understand the phenology of the marine phytoplankton and the various 
environmental variables driving the growth rate and initiation of a Phaeocystis bloom. The 
following chapters (Chapter 7 and Chapter 8) will comprise a review of the existing algorithms 
available for the detection of Phaeocystis, an assessment of the use of various environmental 
parameters for the modelling the evolution of a bloom and finally, the application of the 
algorithm onto satellite imagery. 
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2 Galicia HABs products: Methods 

2.1 Datasets 
2.1.1 In situ datasets 
INTECMAR 

The Technological Institute for the Control of the Marine Environment of Galicia (INTECMAR) is 
monitoring routinely the oceanographic conditions, marine biotoxins and HABs, chemical 
pollution, microbiology and pathology in Galician coastal waters. Its routine monitoring 
programme consists of a weekly sampling at 41 sampling stations distributed across the four 
Rias Baixas.  

At each station, CTD profiles (i.e., conductivity, temperature and depth) between surface and a 
meter above bottom are obtained using a Seabird 25 or a Seabird 19plus loggers, which are 
equipped with a set of coupled sensors: a WETStar fluorimeter, a C-Star transmissometer, a 
spherical irradiometer LI-193SA, an oxygen sensor SBE 43 and an ultraviolet fluorimeter (UFV) 
Aquatracka. Measurements of coupled sensors allow the estimation of profiles of different in 
situ parameters, such as chla concentration, transmittance, photosynthetically active radiation 
(PAR), oxygen saturation and dissolved aromatic hydrocarbons (DHA’s).   

In addition to in situ parameters, integrated water samples are collected at three depth ranges 
(0 m – 5 m; 5 m – 10 m and 10 m – 15 m) using PVC hoses.  Samples are then analysed in the 
laboratory in order to determine chla and inorganic nutrients concentrations (nitrate, nitrite, 
ammonium, phosphate and silicate). Specifically, chla concentrations are 
spectrofluorometrically determined following the method proposed by Zapata et al. (2000).   

Finally, phytoplankton data are also collected using phytoplankton tow nets (10 µm mesh) from 
surface to 15 meters depth. Samples are fixed with formaldehyde 4% and stored under dark 
and cool conditions. Total abundances (in cells L-1) of different species, i.e. Dinophysis 
acuminata, Dinophysis acuta, Gymnodinium catenatum, Alexandrium spp. and Pseudo-
nitzaschia spp., are counted using an inverted light microscope at 250x and 400x magnification 
(Utermöhl, 1958).  

Dedicated CoastObs field campaigns 

In the framework of CoastObs project, a field campaign was carried out in July 2018 in the Ria 
de Vigo using two research vessels. It consisted of five field trips on the same dates as Sentinel 
overpasses including a total of 58 sampling stations.  
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At each station, water-leaving reflectance spectra were measured using two different sets of 
field radiometers: TriOS Ramses and Water Insight Spectrometer (WISP-3).  Water samples 
were also collected from surface to a depth of 4 meters using a PVC hose. Finally, a set of 
parameters were measured in situ using different sensors on-board, including depth, 
temperature, pH, conductivity, turbidity, chla fluorescence, coloured dissolved organic matter 
(CDOM), IOPs (absorption, backscattering and scattering) and underwater radiometric 
measurements.  

Water samples were filtered in the laboratory to determine several biooptical parameters, 
including chla concentration, CDOM, size-fractionated chlorophyll and total suspended matter 
(TSM).  Specifically, chla concentration was determined using a high performance liquid 
chromatography (HPLC) method with a reverse phase C8, following the procedures described 
by Zapata et al. (2000) for pigment extraction and separation. 

Some water samples were fixed with formaldehyde 4%, stored under dark and cool conditions 
and finally analysed using light microscopy by INTECMAR experts. So, phytoplankton cell counts 
of different species, including Alexandrium minutum and Pseudo-nitzschia spp., were obtained.  

2.1.2 Sentinel-3 Images 
Sentinel-3 mission is based on the heritage of ENVISAT MERIS, which has kept operational 
between 2002 and 2012 achieving excellent results in marine and coastal applications. Its 
Ocean and Land Colour Instrument (OLCI) covers a swath width of 1270 km providing the same 
spatial resolution (300 m) as MERIS, but with more spectral bands (21 instead of 15) ranging 
from 400 nm to 1020 nm.  Since December 2018, a two satellite configuration (Sentinel-3A and 
Sentinel-3B) is available allowing a revisit time in Galicia of only one day (Donlon et al., 2012). 

Forty-five Sentinel-3 cloud-free images over the Rias Baixas area acquired between April 2016 
and November 2018 were available. Five images were acquired on the same dates as field data 
were collected during the field campaign conducted in 2018.  

2.1.3 Sentinel-2 Images 
The Multispectral Instrument (MSI) on-board Sentinel-2 operates in 13 spectral bands from 440 
nm to 2220 nm providing a high spatial resolution: four bands at 10 metres, six bands at 20 
metres and 3 band at 60 metres. Revisit time in Galicia varies between 3 and 5 days (Drusch et 
al., 2012). Four Sentinel-2cloud-free images over the Rias Baixas acquired in July 2018 were 
available on the same dates as the field campaign.  
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2.2 Image pre-processing 
2.2.1 Atmospheric correction 
In the framework of CoastObs project, four different atmospheric correction (AC) algorithms 
were validated:  Case–2 Regional processor (C2RCC), Case 2 Regional Coast Colour (aug-C2RCC), 
OLCI Level-2 Water Full Resolution (WFR) and Polymer.  Initial validation was based on the 
comparison of image reflectance spectra for each AC with water-leaving spectra measured in 
situ using both TriOS and WISP-3 field radiometers.  

In Galicia, five Sentinel-3 images and four Sentinel-2images over the Rias Baixas area were 
available on the same dates as field spectra were measured during the field campaign in July 
2018. Initial validation results show that Polymer outperforms other algorithms, and hence it 
was selected in order to develop and validate both chlorophyll regional algorithms and species 
indicators.  

POLYMER v4.6 was developed from an atmospheric correction processor for clear ocean (case-
1) waters that is able to deal with sun glint (Steinmetz et al. 2011). Polymer applies a spectral 
optimization based on a bio-optical model and radiative transfer models to separate 
atmospheric (including glint) and water reflectance. As compared to alternative methods that 
extrapolate from near infra-red bands, it uses the full set of wavebands available. Output values 
are fully normalized water-leaving reflectances.  

2.2.2 Masking 
Masking is based on the pixel identification and classification tool IdePix, an open processor 
available in the STEP (Science Toolbox Exploitation Platform) Sentinel-3 and Sentinel-2 
toolboxes. Pixels flagged as invalid, cloud (i.e. cloud_sure, cloud_buffer, cloud_shadow, 
cirrus_sure, cirrus_ambiguous), land or vegrisk are masked, while the remaining pixels are 
considered as water and hence included in further analyses.  

2.2.3 FCM Clustering 
Reflectance spectra extracted from atmospherically corrected Sentinel-3 images over the 
Galician Case 2 waters are affected by different optically active constituents. Hence, the use of 
a single chla algorithm could result in unreliable chla estimations if it is applied to data from 
different situations, for instance, clean waters and sediment-dominant waters after a storm 
period.  Since concentrations of the different water constituents are not known a priori, several 
authors have proposed the application of clustering algorithms to reflectance data to establish 
clusters that could be related to different water types (Neil et al., 2019).  
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We applied Fuzzy C-Means (FCM) algorithms to Sentinel-3 reflectance spectra linked to in situ 
measurements, as proposed by Gonzalez Vilas et al. (2014) using MERIS data. FCM results 
provide a framework for chla retrieval algorithms, so that a different NN could be developed 
for each cluster. Note that although resulting clusters could be related to different optical water 
types, limited information about water constituents (mainly TSM and CDOM) prevented us 
from drawing relevant conclusions at this stage.  

The FCM technique divides a dataset into a specified number of clusters assigning to each data 
point (i.e. reflectance spectra) a membership degree (ranging from 0 to 1) for each cluster. 
Therefore, unlike hard classifiers as k-means, each data point can potentially belong to more 
than one cluster. The method iteratively adjusts centroids and degrees of membership to 
optimize an objective function until the previously established optimization criteria are met. 
The resulting FCM algorithm is intended to minimize distances between data points and cluster 
centres (Moore et al., 2009). 

FCM algorithm was developed using Matlab software selecting default optimization criteria: a 
maximum number of iterations of 100 and a minimum improvement in the objective function 
between two consecutive iterations of 1e-5. Hence, the algorithm only requires two input 
parameters: the number of clusters (c) and the weight exponent (m), which can be any real 
number greater than 1.   

Since the number of expected clusters was unknown a priori because of the lack of in situ data 
to define optical water types, optimal values of c and m were established using a grid search 
procedure (Gonzalez Vilas et al., 2011), i.e. data were clustered several times varying c from 2 
to 8 and m from 1.1 to 3, and the optimal combination was selected.  Clustering results for each 
combination were evaluated using two functions: 1) the partition coefficient (F), a 
measurement of the overlap between clusters ranging from 0 (overlap between clusters, weak 
clustering) to 1 (without overlap between clusters, strong clustering); and 2) the compactness 
and separation index (S), ratio between the compactness (measuring the variance between 
clusters) and the separation (minimum distance between cluster centres). Hence, the optimal 
combination is expected to have a high F value (no overlap) and a small S value (compact and 
well separated clusters).  

Once the best FCM algorithm was obtained, it can be applied to the training dataset or other 
independent dataset in order to assign a cluster value to each data point according to their 
highest membership degree.  

Similarly, classification images can be obtained by assigning a cluster value to each valid (open 
water) pixel. If a single cluster-specific algorithm is applied to build a map, these images are 
useful for masking pixels belonging to other clusters. And if a different algorithm is available for 
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each cluster, membership grades for each cluster would also allow blending their results to 
create maps with soft transitions.   

2.3 Generation of match-up databases 
Retrieval algorithms are mainly based on machine learning methods requiring a priori 
information about the real output (chlorophyll a concentration or species indicator) 
corresponding to a set of input data (reflectance spectra and/or geometry values). Therefore, 
generation of a dataset of valid match-up data points associating Sentinel images and in situ 
data is needed for the development and validation of these algorithms.  

Data from available Sentinel-2 and Sentinel-3 images were extracted and linked to the in situ 
databases. Due to the great temporal variability in the Galician rias, only data points extracted 
from images acquired on the same date as in situ data were considered as valid.  

For each sampling point, the number of valid pixels in a 3x3 window centred at the in situ station 
location is first extracted. Valid pixels are open water pixels, i.e. pixels which were not masked 
(flagged as invalid, cloud, land or vegrisk) using the IdePix tool.  Points are not included in the 
match-up database if the central pixel is not valid.   

For Sentinel-3, the central pixel is used as match-up value to extract reflectance and geometry 
values, i.e. sun zenith, view zenith and difference between view and sun azimuths.  

For Sentinel-2, the median of valid pixels (between 1 and 9) in the 3x3 window was computed 
in order to reduce the instrument noise. The median is preferred to the mean to reduce the 
effect of mixed and non-masked pixels with extremely high or low values.  

In both cases, the number of valid pixels in the 3x3 window is considered as a quality indicator, 
ranging from 9 (highest quality) to 1 (lowest quality). Note that low quality values indicate that 
the sampling station is located near coast or cloud or foggy areas, so that reflectance values 
could be affected. 

Moreover, the variation coefficient, ratio of the standard deviation to the mean, was also 
computed using only valid pixels (between 1 and 9) as a measure of relative variability of each 
band (reflectance or geometry).  

More details about the match-up extraction process will be included in the validation report 
(D3.10) due to October 2018.  
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2.4 Retrieval algorithms 
2.4.1 Neural Networks (NN) 
Multilayer perpectron (MLP) neural networks (NN) have been widely used for retrieving the 
concentrations of water constituents on coastal waters from remote sensing data.  MLP provide 
important advantages as compared to other statistical approaches, such as the ability to model 
multivariate, complex and nonlinear data without making any assumptions about data 
distribution (Lary et al., 2016). We have used NN for the retrieval of chlorophyll a concentration.   

A MLP is a feedforward NN aimed at approximating a set of input data (reflectance spectra and 
geometry values) to the corresponding output (chla concentration). It consists of a set of 
computational elements, called neurons or nodes, arranged in multiple layers and 
interconnected in a feedforward way: each node in a layer is only connected to the nodes of 
the immediately next layer, but has not connections to nodes in the same or previous layers 
(Haykin et al., 2009). 

A typical MLP architecture is comprised of an input layer, one or more hidden layers and an 
output layer. The input layer only distributes the input variables into the network, without 
processing them. The nodes in the hidden and outputs layers transform their input signal by 
applying a bias and an activation function. Moreover, each connection is defined by a weight 
value.  

The development of a MLP network require three phases: 1) design, 2) training and 3) 
validation.  

Design 

The design of a MLP implies to define the architecture of the algorithm: inputs and output, 
number of hidden layers (0, 1 or 2), number of nodes in each hidden layer and the activation 
functions to be applied. Note that the number of nodes of the input layer is equal to the number 
of variables in the input dataset and the output layer only has one node corresponding with the 
desired output.  Non-linear activation functions (sigmoid or tangential) are preferred for the 
hidden layers, while the linear or identity functions are usually established in the output node.  

Training 

Once the MLP architecture is designed, the relationship between the input and the output 
depends on the bias and weight values. These values are established in the training phase by a 
supervised learning technique, which uses a priori information about the actual output 
corresponding to a set of input data. Biases and weights are iteratively adjusted to minimize an 
error function until the best approximation to the actual output is achieved, i.e. no more 
significant variations in the overall error are observed.  The adjustment is based on a back-
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propagation learning procedure: starts in the output layer, continues layer-by-layer in a looping 
pattern and ends in the input layer. Weights are adapted using different nonlinear optimization 
methods.  

Validation 

In the validation phase, the performance of the trained MLP is evaluated using a set of 
parameters which compares the observed output (O) and the obtained one using the algorithm 
(M):  

• Coefficient of determination (R2) between O and M 

 

• Mean prediction error (MPE): 
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• Root mean square error (RMSE): 
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• Relative RMSE: 
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R2 measures the correlation between the observed and the predicted datasets. MPE is useful 
for determining if a NN tend to underestimate (high positive values) or overestimate (high 
negative values). RSME and Rel. RMSE are measurements of absolute and relative error, 
respectively, and VAR quantifies error variability.   
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Training strategy 

Although the same dataset could be used in the training and validation phases, the general 
practice to avoid overfitting and ensure a greater generalization capability is divide the 
complete input dataset into three subsets: a training subset, a validation subset and a test 
subset.  

The training and validation subsets are used in the training phase. The training subset is used 
for updating the weights and biases, while the validation subset is only used for computing an 
additional error measurement, which is monitored during the complete process of 
learning.  Both validation and validation errors usually decreases during the initial phase of 
learning, but when the network begins to overfit the data, the validation error typically begins 
to rise. In order to avoid overfitting, the network weights and biases are saved at the minimum 
of the validation error.  

The test subset is only used in the validation phase. Since it has not included in the training 
procedure, performance measurements computed from this independent dataset are useful 
for gaining insight into the generalization capability of the algorithm.  Note that parameters 
from test subsets are expected to be worse than those attained using the training and validation 
subsets.  

The best NN for a given problem (e.g. retrieval of chla concentration) was selected in a two-
step procedure.  

In the first stage, the optimal design was selected using a trial-error procedure. Different NN 
models were trained and validated varying the input parameters, such as number of hidden 
layers and neurons or activation functions, choosing the best configuration according to the 
validation parameters computed for the train, validation and test subsets, and according to the 
following criteria:  maximum R2 and minimum RMSE.  

The second stage deal with the problem of the variability of the results between different runs, 
since results depend on the initial value of the weights, which are randomly established.  So, 
we performed 10,000 runs using NN with the optimal configuration and selected the best 
model using the same criteria as in the previous stage.  

NN were trained using the Matlab implementation of Levenberg-Marquardt backpropagation 
method (Hagan et al., 1994), which has been reported to be the fastest algorithm for training 
moderate-sized feedforward neural networks (up to several hundred weights). Mean sum of 
square errors (mse) was selected as performance function, and other training parameters were 
set to default values: maximum number of epochs to train (1000), performance goal (0), initial 
mu (0.01), minimum performance gradient (1e-7) and maximum validation failures (6).  
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Input and output data were scaled between 0 and 1 using minimum and maximum values in 
order to improve the stability and performance of the NN models. Moreover, minimum and 
maximum values are useful for defining the application scope, so that pixels with input or 
output values out of range are excluded in the map generation process.  

2.4.2 Support Vector Machines (SVM) for HABs detection  
SVM are supervised learning algorithms that are usually used as binary (2-class) classifiers, 
although approaches for one-class classification, multi-class classification and regression have 
also been implemented. SVM are a robust technique with a strong theoretical basis, providing 
a better generalization capability and a lower computational overload than other classifiers. As 
neural networks, SVM do not make any assumption about data distribution and can model 
complex and nonlinear data. We have applied the SVM approach for 2-class classification to 
develop species indicators based on presence/absence and bloom/no bloom models for 
Pseudo-nitzschia spp. and Alexandrium minutum.  

SVM binary classifier is based on the linear classifier, which uses a simple hyperplane to 
separate two classes, but operating in a feature space with a higher dimension than the input 
space. It is founded on the fact that linear separability is increased in this feature space, 
according to Cover’s Theorem (Cover, 1965).  

The linear classifier searches for the optimal hyperplane by maximizing the margin, i.e.  the 
distance between the separating surface and the closest training data point of each class. 
Margin is maximized using the Lagrange method to solve a quadratic optimization problem 
constrained by linear restrictions that are satisfied when a perfect classification is achieved 
(Cortes and Vapnik, 1995).  With the aim of avoiding overfitting if data are not perfectly 
separable, the so-called stack variables are introduced to relax linear restrictions and allow 
some classification errors, searching for a balance between maximizing the margin and 
minimizing the overall error. The cost parameter (C) controls the penalty for misclassification 
(Cristianini and Shawe-Taylor, 2000). 

Computations in the high dimensional feature space are avoided using kernel functions, 
according to the Mercer’s theorem (Mercer, 1909). Typical kernels are the linear function, the 
polynomial function and the radial basis function (RBF). We chose the RBF kernel because it has 
been reported to perform slightly better for datasets with a similar size (around 100-200 data 
points) and it only requires two parameters: gamma (γ) and the cost parameter (C), reducing 
the complexity of the model selection process as compared to other kernels (Camps-Valls and 
Bruzzone, 2005). 

Binary SVM models were developed using the JAVA version of LIBSVM library, which 
implements a sequential minimal optimization type algorithm (Chang and Lin, 2011) to solve 



  
 
 

 

 26 
  

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 776348 

the constrained optimization problem expressed in terms of Lagrange multipliers using the 
kernel trick, i.e. to train the SVM model. In addition to the classical approach with a binary 
output (+1 or -1), LIBSVM also implements a probability output, i.e. probability estimates 
(between 0 and 1) are computed for each class.  

Input data were linearly scaled between 0 and +1 before training the models in order to avoid 
a greater effect on the results of features with larger numeric ranges (Sarle, 1994).  

The cost parameter (C) was weighted using a different weight for each class in order to deal 
with the imbalance problem, which may cause poorer results because of the classification bias 
towards the majority class.   Hence, the accuracy of the minority class (i.e. with fewer training 
data points) is improved by applying a larger weight, at the cost of a possible increase of 
misclassification for the majority class. In practice, the percentage  of data points in each class 
was set as weight of the other class.  

Model evaluation 

The models performance was evaluated using a set of measures that are commonly applied to 
binary classification problems (González Vilas et al., 2014). All these measures are derived from 
the confusion matrix, a table with two rows and two columns which compares the model output 
with the observed output and reports the number of true positives (TP), true negatives (TN), 
false positives (FP) and false negatives (FN) (Table 1). 

Table 1 – Confusion matrix comparing the model output with the observed output.  

  Observed 
  Class +1 Class -1 

Model Class +1 TP FP 
Class -1 FN TN 

 

• Overall accuracy (OA): Percentage of data points that are correctly classified 

OA=(TP+TN)/(TP+TN+FN+FP) 

• True positive rate (TPR): Individual accuracy for class +1 

TPR= TP/(TP+FN) 

• True negative rate (TNR): Individual accuracy for class -1 

TNR= TN/(TN+FP) 

• False negative rate (FNR):  

FNR= FN/(TP+FN) 
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• False positive rate (FPR):  

FPR= FP/(TN+FP) 

• Kappa (κ): It assesses the classification agreement removing the chance effect. It varies 
from 0 to 1.  

κ= (OA-CA)/(1-CA) 

CA= ((TP·TN) + (FP·FN))/(TP+TN+FP+FN)2 

As suggested by Cohen (Cohen, 1960), kappa value is interpreted as follows: values lower than 
0 indicates no agreement; 0.01 to 0.20 as none to slight; 0.21 to 0.40 as fair; 0.41 to 0.60 as 
moderate; 0.61 to 0.80 as substantial and 0.81 to 1.00 as almost perfect agreement.  

If the probability output (between 0 and 1) is used instead of the binary output (+1 or -1), it is 
necessary to select a threshold to convert probability values into a binary result by assigning +1 
if probability is above this threshold or -1 otherwise.   Hence, results of the matrix confusion 
and derived measures depend on the selected threshold.  

In order to deal with this problem, the Area Under the Receiver Operating Characteristic (ROC) 
Curve (AUC) was also computed when probability outputs were available. The ROC curve plots 
TPR against FPR computed at different probability thresholds.  Hence, AUC is a measure 
independent of the threshold that is useful for comparing different models. AUC values greater 
than 0.9 are considered excellent, from 0.8 to 0.9 very good, from 0.7 to 0.8 good, from 0.6 to 
0.7 average and lower than 0.6 poor (Hosmer and Lemeshow, 2000). 

Model selection 

Although RBF SVM models only require two parameters (C and γ), their optimal values for a 
given problem are unknown a priori.  The selection of the optimal parametric configuration was 
based on a simple grid-search approach, so that different models were trained and validated 
using different values of C and γ (but keeping the same scaling and weight values), and the 
model with the best performance was finally selected. The process was implemented in two 
consecutive phases in order to save computing time: a first search using a coarse grid with 
exponentially growing values (C = 2−5, 2−3, …, 215; γ = 2−15, 2−13, …, 23) and a second one using a 
finer grid with parameters varying linearly around the values obtained from the first search 
(Gonzalez Vilas et al., 2014).  

Since using the same dataset for training and validation could lead to overfitting, the best model 
was selected according to performance measures computed from the results obtained in a 
cross-validation process. Cross-validation is a standard method that divides the training set into 
k subsets and then the model is trained k times using (k-1) subsets while the remaining one is 
retained for validation. Specifically, we applied leave-one-out cross validation, so that the 
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model is trained N times using N-1 data points (being N the number of elements of the training 
set) and the remaining data point is retained for validation.  

The parametric configuration of the SVM model resulting in the highest kappa (with binary 
output) or AUC (with probability output) computed for the leave-one-out cross-validation 
output dataset was selected as the optimal one in the grid search procedure.   

Once the optimal values of C and γ are selected, the final SVM model is trained using the 
complete training dataset. This model can be used for validation from an independent dataset 
or generation of map products. 

3 HABs products for Galicia case study: 
Regional chlorophyll a algorithms 

3.1 Theoretical basis 
Chla concentration is one of the most important basic products derived from optical satellites. 
In fact, it has been processed in an operational way for open ocean areas since the 1980’s using 
empirical algorithms based on ratios (e.g. between blue and green bands) or combinations of 
different spectral bands. Despite of empirical algorithms provide reliable results in Case 1 
waters (open ocean), the strong absorption in the blue wavelength region in typical Case 2 
waters (i.e. water with high concentrations of other water constituents in addition to chla) 
prevent an accurate retrieval of chla concentration (Gregg and Roussseaux, 2014).  

Therefore, other approaches have been proposed for the retrieval of chla concentration in Case 
2 waters, including semi-analytical algorithms based on the properties of the reflectance peak 
near 700 nm; or neural networks (NN), a supervised learning technique that uses in situ data to 
train the algorithms. For instance, NN were successfully applied in the MERIS Case-2-Regional 
Processor (C2R) (Doerffer and Schiller, 2008).  

Retrieval of chlorophyll a (chla) concentrations in the optically complex waters of the Galician 
rias using optical satellite images has proven to be a challenging task. Optical properties of the 
water are the result of rapid changes in the temporal and spatial distribution of phytoplankton 
abundance and composition related to regional characteristics, as upwelling and freshwater 
inputs from small rivers. Moreover, the relatively low chla concentrations in the area (between 
0 and 10 mg m-3, mainly lower than 3 mg m-3) hinders the reliability of most of Case 2 
algorithms, which usually cover a much wider range of chla concentration. As a consequence, 
development of specific regional algorithms was required in order to obtain reliable chla maps 
from ENVISAT MERIS (Gonzalez Vilas et al., 2011), and is also proposed for Sentinel-3.  
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3.2 Algorihtm development 
Since Sentinel-3 OLCI is based on the heritage of MERIS, development of chla algorithms was 
based on the same methodology proposed by Gonzalez Vilas et al., 2011.  

This approach consists of three steps: 1) atmospheric correction; 2) definition of the scope of 
the algorithms using masking and FCM clustering techniques; and 3) application of NN 
algorithms for the retrieval of the chla concentration. 

FCM Clustering 

FCM clustering algorithm was developed using a match-up database linking Sentinel-3 
reflectance spectra with INTECMAR sampling stations (see section 2.3). Note that Polymer 
atmospheric correction was first applied to all the images (see section 2.2.1).  

The match-up database was filtered to include only data points with a quality indicator of 9 (9 
valid pixels in the 3x3 window, see section 2.2.3). Moreover, data points with negative 
reflectance values in the 3x3 window and with high variation coefficients for a given band 
(higher than percentile 95) were also removed. The final database consisted of 457 data points 
derived from 36 images acquired between April 2016 and November 2018.  

Results of the grid search procedure to select the optimal number of clusters (c) and weight 
exponent (m) are shown in Table 2 (see section 2.2.3) 

Table 2 – Summary of clustering results applying FCM algorithm. Partition coefficient (F) and compactness and separation 
index (S) were computed for a range of conditions (m, weighting exponent; c, number of clusters). 

m 

c 1.1 1.5 2 2.5 3 
F S F S F S F S F S 

2 0.99 0.17 0.50 1864 0.79 0.14 0.70 0.15 0.64 0.18 
3 0.98 0.19 0.88 0.16 0.70 0.16 0.56 0.19 0.48 0.26 
4 0.97 0.27 0.83 0.21 0.62 0.18 0.46 0.25 0.38 0.32 
5 0.97 0.31 0.80 0.25 0.57 0.24 0.40 0.27 0.31 0.44 
6 0.96 0.66 0.79 0.22 0.52 0.22 0.35 0.42 0.27 1.68 
7 0.96 0.46 0.76 0.33 0.49 0.31 0.31 0.57 0.22 10.77 
8 0.96 0.39 0.73 0.42 0.45 0.46 0.28 0.88 0.20 3.33 

 

The best FCM algorithm was defined with two clusters and a weighting exponent of 1.1 (F = 
0.99; S = 0.17).  A cluster was assigned to each one of the 457 data points according to their 
highest membership degree, resulting in a 40% (n = 185) of data points belonging to cluster#1 
and a 60% (n = 272) to cluster#2 (Table 2). Selection of the corresponding cluster was 
unequivocal (membership degree for that cluster greater than 0.99) in a 93% of the data points.  
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Table 3 summarizes basic statistical information about geometry and chla concentration 
associated to each cluster. These parameters were computed using only data points in which 
reliable chla information was available (n = 373). Both chla concentrations and geometry values 
are overlapped in both clusters. In fact, according to the results from t- test, there are not 
significant differences in geometry and chla between both clusters.  

Table 3 – Number of data points belonging to each cluster without (nTot) and with (nChla) chla concentration data. 
Geometry and chla statistics (mean ± standard deviation and range) are shown for each cluster. 

Cluster nTot nChla Sun Zenith (º) View Zenith(º) Azimuth Diff. chla (mg m-3) 

#1 185 140 53.52±15.08 
26.34-71.16 

36.83±13.58 
4.37 - 54.46 

91.80±87.15 
17.38 - 237.43 

1.96±1.80 
0.04-9.22 

#2 272 233 39.92±10.91 
24.26-69.72 

26.08±17.79 
0.69 - 54.46 

74.84±80.29 
17.02 - 237.44 

2.32±2.56 
0.04-9.66 

 

Therefore, differences between both clusters could be related to other water constituents, i.e. 
TSM and CDOM. Unfortunately, the lack of TSM and CDOM information prevent a complete 
characterization of possible water types associated to these clusters.  

However, a valuable clue can be found in the mean reflectance spectra shown in Figure 2.  
Cluster#1 shows higher values than cluster#2 at lower wavelengths (between 400 nm and 560 
nm), which could be related to more turbid waters supporting a higher sediment load.   

 
Figure 2 – Mean reflectance spectra for each cluster. 



  
 
 

 

 31 
  

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 776348 

Classification images were obtained from the 36 images included in the match-up extraction. 
Both clusters are present in most of the images, although cluster#1 is dominant (more than 
90% of pixels of the image) in six images and cluster#2 in four images.  

NN Algorithms 

The retrieval of chla concentration is based on MLP NN (see section 2.4.1). FCM results defined 
the scope of the NN, so that a different algorithm could be applied to each cluster and results 
could be merged to obtain a final chla map.   

Note that NN are supervised algorithms and hence require in situ chla data paired with Sentinel-
3 images. NN were developed using the same match-up database as the FCM algorithm, but 
including only data points with chla concentrations measured in situ by INTECMAR in its 
monitoring program. After applying filtering using the quality indicator and the variation 
coefficient, 373 data points were available (140 assigned to cluster#1 and 233 to cluster#2). 
Data derived from 35 images between April 2016 and November 2018.  

Both clusters cover the complete range of variation observed in the dataset (from 0.04 mg m-3 
to 9.66 mg m-3), with average values around 2 mg m-3 (Table 3). According to the typical chla 
pattern recorded in the Rias Baixas area (Nogueira et al., 1997, González Vilas et al., 2011), chla 
concentrations tend to be lower than 1 mg m-3 (mainly in winter) and rise up to maximums of 
8 mg m-3 during upwelling events (especially in spring and autumn). In our dataset, a similar 
pattern is observed, with a 45.6% of the data points showing concentrations lower than 1 mg 
m-3.  Concentrations greater than 8 mg m-3 recorded in 8 data points (2.1 % of the total) were 
due to exceptional situations, such as the bloom of Alexandrium minutum observed in summer 
2018.  

A different NN model was developed for each cluster: NNRB-Cl#1 and NNRB-Cl#2. Input and 
output datasets were first linearly scaled between 0 and 1 using gain and offset values 
computed from minimum and maximum values shown in Table 4.  

The basic architecture was selected in a trial and error procedure (see section 2.4.1). Both NN 
models consist of an input layer, two hidden layers and an output layer. The input layer includes 
13 input nodes: 10 reflectance values corresponding with Polymer bands ranging from 400 nm 
to 579 nm and three geometry values: sun zenith, view zenith and difference between sun and 
view azimuth (Table 4). The output layer has a unique node associated to the chla 
concentration. In both models, hyperbolic tangent function was selected as activation function 
for each hidden layer, while a simple identity function was applied to the output node. In terms 
of design, the main difference between both algorithms is the number of nodes in the hidden 
layers: 7 and 4 in NNRB-Cl#1; 5 and 10 in NNRB-Cl#2. 
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Table 4 – Input and output variables included in each model, showing the minimum and maximum values used for scaling. 
Reflectances values are multiplied by 104. 

Variable NNRB-Cl#1 NNRB-Cl#2 
 Minimum Maximum Minimum Maximum 

Rw400 151.20 320.12 41.93 185.30 
Rw412 147.75 294.09 44.22 167.90 
Rw443 140.81 283.48 47.89 163.30 
Rw490 153.17 328.78 59.17 163.31 
Rw510 136.83 340.44 60.91 171.37 
Rw560 80.51 307.14 63.66 171.17 
Rw620 10.67 81.33 9.11 51.92 
Rw665 2.14 50.73 1.43 30.82 
Rw754 3.27 24.05 4.24 26.63 
Rw779 0.54 13.15 1.09 15.89 

Sun Zenith 26.34 71.16 24.26 69.72 
View Zenith 26.34 54.46 0.69 54.46 

Azimuth Difference 26.34 237.43 17.02 237.44 
Chla concentration 0.04 9.22 0.04 9.66 

 

Each cluster-specific NN model was developed using only data points with an unequivocal 
assignation to the corresponding cluster, i.e. with a membership grade higher than 0.99. Hence, 
mixed pixels were excluded.  

Note that the complete dataset was divided into three subsets (training, validation and test). 
Table 5 shows a summary of the performance measures computed from these subsets (see 
section 2.4.1 for details).  

Table 5 – Summary of the performance measures computed from the training, validation and test datasets using the NN 
models developed in the project. 

Model Dataset N R2 MPE VAR RMSE RMSE% 

NNRB-Cl#1 
Training 97 0.93 0.00 0.01 0.10 21.1 

Validation 19 0.40 -0.01 0.08 0.27 34.1 
Test 13 0.49 -0.05 0.20 0.44 43.3 

NNRB-Cl#2 
Training 161 0.97 0.00 0.01 0.10 20.5 

Validation 32 0.65 -0.14 0.13 0.38 41.5 
Test 22 0.78 -0.21 0.13 0.40 42.9 

 

Parameters from the validation and test subsets are excepted to be worse than those obtained 
using the training set, since data were not included in the learning procedure. Good results in 
the test subset are indicative of a good generalization capability.  
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NNRB-Cl#1 shows very good results in the training subset. According to the test subset, it shows 
a linear trend between the observed and predicted values but with a low R2 (0.49), an absolute 
error (RMSE) lower than 0.5 mg m-3 and a tendency to underestimate the chla concentrations 
(MPE = -0.05).  

NNRB-Cl#2 outperforms NNRB-Cl1# providing more reliable results, with a smaller difference 
between the training and test subsets evidencing a better generalization capability. A clear 
linear trend is observed between the observed and predicted values (R2 = 0.78 in the test set). 
According to the test result, the model also tends to underestimate values (negative MPE 
values) and shows similar absolute and relative errors (lower than 0.5 mg m-3 and 45%), but a 
lower error variability. 

Despite of the promising results, both algorithms could be improved by a further validation. 
With this aim, a field campaign will be conducted in June 2019 in the Ria de Vigo within 
CoastObs. Validation results will be included in the deliverable D3.10 (Validation report) due in 
October 2019.  

3.3 Generation of chla maps 

 
Figure 3 – Chain processing for generating a chla map starting from a Sentinel-3 image. 
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Figure 3 summarizes the chain processing for the generation of chla maps from Sentinel-3 
images.  

FCM Intermediate Products  

Two intermediate map products derived from the 2-cluster FCM algorithm are included in the 
processing chain for the generation of chla maps. Both products are built consecutively: 

1) Grade maps for each cluster showing the membership degree to that cluster for each non-
masked (sea) pixel. 

2)  Classification image showing the cluster for each non-masked (sea) pixel, which is assigned 
as the cluster with the maximum membership degree in the grade maps.  

Figure 4 shows an example of grade image showing the membership degree computed for 
cluster#2 and the resulting classification image.  

 
Figure 4 – FCM results derived from a Sentinel-3 image on 19 June 2018. a) Grade image showing the membership degree to 

cluster#2. b) Classification image showing the cluster value assigned to each pixel. 
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Note that red areas with grades near 1 are classified as cluster#2 while blue areas are identified 
as cluster#1. Grade images are useful for merging chla concentrations derived from different 
NN cluster-specific algorithms while classification images define the scope of application of a 
single algorithm. 

NN Product 

NN cluster-specific algorithms are only applied to non-masked pixels belonging to the 
corresponding cluster in the classification image.  

For a given pixel, the final output value is computed following the next steps: 

1) Scale input variables. If the input value for a given variable is out of the range, pixel is 
masked and the following steps are not performed.  

2) Compute values of the nodes in the first hidden layer. 

3) Compute value of the nodes in the second hidden layer. 

4) Compute value of the output node, i.e. the neural network output.  

5) Compute final output (i.e. chla concentration) from the scaled value obtained as neural 
network output. 

 

Figure 5 – Chla map on 19 June 2018 derived from the application of NNRB-Cl#2. 

Figure 5 shows an example of final chla map on 19 June 2018. Chla concentrations were 
computed using NNRB-Cl#2, which provides more reliable results. Classification image (Figure 
4) was used for defining the application scope, so that pixels belonged  to cluster#1 were 
masked.  
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4 Galicia HABs products: Species 
indicators 

4.1 Theorethical basis 
Chla concentration is common to almost taxonomic groups and thus it is a good estimator of 
phytoplankton biomass. Unfortunately, it does not provide information about the species or 
their toxicity. Species indicators are algorithms aimed at the direct detection of a specific 
species or taxon from satellite colour images in order to generate abundance, bloom/no bloom 
or presence/absence maps. These indicators are founded on the fact that massive 
proliferations of some species may cause a distinctive water colour, and hence show a 
characteristic spectral signature which could be detected in the images. In addition to the 
typical limitations of optical remote sensing (e.g. cloud cover), Kudela et al. (2007) highlight the 
main problems associated with the development of these algorithms: 1) images are limited to 
a discrete number of spectral bands so that distinctive spectral features of the species could be 
out of their spectral range; 2) spectral signatures, especially on complex coastal waters, are the 
result of the interaction of different species, not only the target species, and other inorganic 
and organic components. In order to deal with these drawbacks and gain a deeper insight into 
the species behaviour, indicators proposed by different authors usually integrate ancillary data.  

As with chla concentration, application of regional-specific algorithms being able to capture the 
complexity of the study area identifying typical situations are expected to provide better 
results. Therefore, machine learning methods based on a supervised learning using in situ data 
are preferred to empirical or semi-analytical methods.  

Within CoastObs, we have developed species indicators for two toxic taxonomic groups causing 
HABs in Galicia: Pseudo-nitzschia spp. and Alexandrium minutum. Development of higher-level 
products based on the integration of ancillary data with these algorithms is planned in a later 
stage of the project.  

4.2 Species indicator for Pseudo-nitzschia spp. 
4.2.1 Algorithm development 
The general approach is based on three steps: 1) atmospheric correction; 2) masking; 3) 
application of a SVM model for estimating the probability of a bloom of Pseudo-nitzschia spp. 
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Dataset 

Only Pseudo-nitzschia spp. total abundances provided by INTECMAR were available for the 
development of the algorithm. Therefore, both non-toxic and toxic species are included in the 
dataset, making still more difficult to define distinctive spectral features. Unfortunately, data 
about species identification or toxicity (cDA or pDA) were not available.  

A total of 834 data points with Pseudo-nitzschia spp. abundance derived from INTECMAR 
stations sampled on the same dates as Sentinel-3 images were available between May 2016 
and November 2018. After removing data points associated with pixels which were masked 
(mostly cloudy pixels) or showed a quality indicator lower than 9 and/or negative reflectances 
in the 3x3 extraction window, the final match-up dataset linking reflectance and geometry 
values with Pseudo-nitzschia spp. abundances consisted of 383 data points. This final dataset 
covers the complete temporal coverage (between May 2016 and November 2018) with data 
from 34 different images.  

Table 6 shows the abundance distribution for the complete dataset and considering clusters 
derived from FCM algorithm explained in section. Note that cluster datasets are built including 
only data points with an unequivocal assignation to the corresponding cluster (membership 
degree greater than 0.99), so that 27 mixed data points were excluded. Threshold for defining 
bloom and no bloom situations is set in 105 cell L-1.  

Table 6 – Abundance distribution of Pseudo-nitzschia spp. for the complete, cluster#1 and cluster#2 datasets. 

Abundance (cells L-1) Complete Dataset Cluster#1 Cluster#2 
0  118 (30.81 %) 79 (56.03 %) 30 (13.95 %) 

103-104 90 (23.50 %) 35(24.82 %) 48 (22.33 %) 
104-105 108 (28.20 %) 24 (17.02 %) 75 (34.88 %) 
105-106 57 (14.88 %) 3 (2.13 %) 52 (24.19 %) 

> 106 10 (2.61 %) 0 10 (4.65 %) 
No bloom (< 105) 316 (82.51 %) 138 (97.87 %) 153 (71.16 %) 

Bloom (> 105) 67 (17.49 %) 3 (2.13 %) 62 (28.84 %) 
Total 383 141 215 

 

Approximately 30% of the data points in the complete dataset show zero abundance, 
evidencing a total absence or abundances below the detection limit. Anyway, zero values could 
lead to unreliable results if approximation methods, such as regression or neural networks, are 
applied to estimate abundances.  Hence, development of binary models (presence/absence or 
bloom/no bloom) are preferred to abundance algorithms.  

In terms of bloom/no bloom, the complete dataset is clearly unbalanced, with less than 20% of 
data points identified as bloom. As a consequence, we opted for SVM methods, which have 
proved to be a valuable tool for working with unbalanced datasets (see section). In fact, 
Gonzalez Vilas et al. (2014) developed bloom/no bloom SVM models for predicting Pseudo-
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nitzschia spp. on the Galician rias from a set of environmental variables using a dataset with 
approximately 15% of blooms.  

A remarkable fact is that the cluster#1 dataset only has 3 data points (2.13 %) identified as 
blooms, so that the development of a cluster-specific bloom/no bloom model is unfeasible.  

Therefore, there raised two options: 1) development of a bloom/no bloom model using the 
complete dataset; and 2) development of a bloom/no bloom model specific for cluster#2, 
considering all the data points belonging to cluster#1 as “no bloom” 

Both options were tested, but the bloom/no bloom SVM model developed using the complete 
dataset has proven to be more robust and has provided more reliable results.  

SVM bloom/no bloom model 

Table 7 shows the input variables included in the bloom/no bloom model: 10 reflectance 
(Polymer) values between 400 nm and 779 nm and three geometry values (sun zenith, view 
zenith and difference between sun and view azimuths). Input data were scaled between 0 and 
1 using the minimum and maximum values also shown in Table. These ranges define the 
application scope of the SVM model.   

The best bloom/no bloom model was obtained as explained in section, applying first a leave-
one-out cross validation for selecting the optimal parameters and then training the complete 
training dataset with this optimal parametric configuration to obtain the final SVM model. 
Probability output was preferred to binary output since it provides more information.  

Table 7 shows the performance measures computed from the leave-one-out cross-validation 
and the application of the final SVM model to the complete training dataset. As we work with 
probability outputs (between 0 and 1), a threshold needs to be set in order to compute 
performance measures derived from the confusion matrix (OA, TPR, TNR, FNR, FPR, κ, see 
section). Results shown in the table were computed using the optimal threshold, i.e., threshold 
maximizing the sum TPR + TNR. 

Table 7 – Performance measures computed from the leave-one-out cross-validation process and from the training dataset 
using the final SVM bloom model. 

 Leave-one-out 
cross-validation 

Training dataset 
(Final SVM Model) 

OA 0.90 0.95 
TPR 0.90 0.93 
TNR 0.90 0.96 
FNR 0.10 0.07 
FPR 0.10 0.04 
κ 0.87 0.94 
AUC 0.95 0.97 
Optimal threshold 0.50 0.50 
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Results from cross-validation evidence a robust model, with the same individual accuracy for 
both classes despite of the unbalance in the dataset, an excellent AUC value and an almost 
perfect agreement (κ = 0.87) (see section for AUC and κ interpretation).  Moreover, it shows a 
good generalization capability, with similar results from both cross-validation and training 
datasets. The model is able to predict more than 90% of bloom or no bloom situations correctly, 
with a false alarm percentage lower than 5%.  

4.2.2 Generation of maps products 
Figure 6 summarizes the chain processing for the generation of a bloom probability map  or a 
bloom/no bloom map starting from a Sentinel-3 image.  

 
Figure 6 – Chain processing for generating a Pseudo-nitzschia spp. bloom/no blooom map starting from a Sentinel3 image. 

For a given non-masked pixel, the application of the SVM bloom prediction model consists of 
the next steps: 

1) Scale input variables 

2) Compute kernel values for each support vector by applying the RBF kernel function  
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3) Compute decision values for each class (bloom or no bloom) 

4) Compute the pairwise probability matrix 

5) Compute the probability estimation for each class. Probability for bloom class is used 
for building bloom probability maps.  

6) Apply a threshold of 0.5 to decide if the given pixel is classified as bloom (probability 
value higher or equal than threshold) or no bloom (probability value lower than 
threshold).  Results are useful for generation bloom/no bloom maps.  

In practice, two kinds of maps products are generated, as we can see in the example in Figure 
7: a bloom probability map (derived in step 5) and a bloom/no bloom map (obtained in step 6).  

 
Figure 7 – Results from SVM bloom prediction model for Pseudo-nitzschia spp. on 1 August 2018. A) Bloom probability map. 

B) Bloom/No Bloom map.  
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4.3 Species indicators for Alexandrium minutum 
In summer 2018, between the end of May and the beginning of August, a HABs of Alexandrium 
minutum was detected in the southern Rias Baixas, i.e. Vigo and Pontevedra. High 
concentrations (higher than 106 cells L-1) were recorded. In fact, the bloom was even visible to 
the naked eye, appearing as brown-red patches (Figure 8). 

 
Figure 8 – Detail of a brown patch due to a bloom of Alexandrium minutum in the Ria de Vigo on July 5, 2018.  

Despite of the limited image availability because of fog and clouds, species indicators for 
Alexandrium minutum were developed for both Sentinel-3 and Sentinel-2. 

4.3.1 Sentinel-3 species indicator  

4.3.1.1 Algorithm development 

Dataset 

This product was developed using Alexandrium minutum abundances measured from water 
samples collected during the field campaign conducted in the Ria de Vigo within CoastObs and 
the INTECMAR routine monitoring program (including the four Rias Baixas). The complete in 
situ database includes 385 data points from 20 different dates between 28 May and 1 August, 
2018. Bloom (abundances greater than 105 cells L-1) and significant presence (abundances from 
104 cells L-1 to 105 cells L-1) of Alexandrium minutum were detected in 24 and 52 sampling 
stations, respectively, all of them located in the rias of Vigo and Pontevedra. In this way, 36.5 
% of 208 sampling stations in these rias were affected by A. minutum, but it was not detected 
in the rias of Arousa and Muros (summing up 177 sampling stations). 
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Reflectance values were extracted from atmospherically corrected (Polymer) Sentinel-3 images 
and associated with the in situ dataset considering only stations sampled on dates with images, 
summing up a total of 177 data points. The final valid match-up dataset, after filtering masked 
pixels and/or pixels with a quality indicator lower than 9, includes only 60 data points derived 
from 5 images. Global abundance distribution, as well as for southern and northern rias 8 
(Figure 1), is shown in Table 8.  

Table 8 – Abundance distribution of Alexandrium minutum for the complete study area, southern rias (Vigo and Pontevedra) 
and northern rias (Muros and Arousa).  

Abundance (cells L-1) Global Vigo and 
Pontevedra 

Muros and 
Arousa 

0  42 (70.00 %) 3 (14.29 %) 39 (100 %) 
10-104 5 (8.33 %) 5(23.81 %) 0 
104-105 6 (10.00 %) 6 (28.57 %) 0 

>105 7 (11.67 %) 7 (33.33 %) 0 
Absence (< 104) 47 (78.33 %) 3 (14.29 %) 39 (100 %) 
Presence (> 104) 13 (21.67 %) 18 (85.71 %) 0 

Total 60 21 39 
 

Data points with zero abundances (abundances below the detection limit) represent 70% of the 
data points in the global dataset, prevent us from obtaining reliable results using approximation 
functions to estimate abundances. On the other hand, only 7 data points (11.67 %) were 
identified as bloom (abundances greater than 105 cells L-1) and hence SVM presence/absence 
models were preferred to bloom/no bloom models. A threshold of 104 cells L-1 was selected, so 
that a ratio 20:80 between the minority class (presence) and the majority class (absence) was 
observed.  

As observed in the complete in situ dataset, there is a clear spatial pattern. While northern rias 
(Muros and Arousa) were not affected by A. minutum, presence was observed in 85.71 % of the 
samplings in the southern rias (Vigo and Pontevedra) with more than 30% of blooms.  

SVM presence/absence model 

Input variables include 10 reflectance values between 400 nm and 779 nm. Geometry values 
were excluded due to the limited availability of images. Table shows the minimum and 
maximum values used for scaling the input data between 0 and 1.  

The best presence/absence model was obtained as explained in section. First, the optimal 
parametric configuration was selected by applying a leave-one-out cross validation, and 
secondly the final SVM model is obtained by training the complete training dataset using the 
optimal values of C and γ. Probability output was preferred to binary output.  
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Performance measures computed from the leave-one-out cross-validation process and from 
applying the best model to the training dataset are shown in Table 9. Threshold-dependant 
measures (all except AUC) were computed using the optimal threshold (i.e. threshold 
maximizing the sum TPR + TNR).  

Table 9 – Performance measures computed from the leave-one-out cross-validation process and from the training dataset 
using the final presence SVM model. 

 Leave-one-out 
cross-validation 

Training dataset 
(Final SVM Model) 

OA 0.80 0.87 
TPR 0.77 0.85 
TNR 0.81 0.87 
FNR 0.23 0.15 
FPR 0.19 0.13 
κ 0.77 0.85 
AUC 0.87 0.94 
Optimal threshold 0.19 0.20 

 

Despite of the low size of the dataset, the SVM model is quite robust, showing similar accuracies 
for both presence and absence classes (around 0.8), a good AUC of 0.87 and a substantial 
agreement (κ = 0.77) computed from the cross-validation dataset. Results from the training 
dataset are only slightly better than the obtained ones by cross-validation, indicating a good 
generalization capability. The final model is able to predict more than 85% of presence or 
absence situations correctly, with less than 15% of false alarms.  

Within the bloom prediction product, this model is only an intermediate step that is aimed at 
identifying presence areas where an abundance estimation algorithm will be applied in the next 
stage. As a probability output is obtained, application of a threshold is required to generate a 
binary (presence/absence) output. Instead of using the optimal threshold, we opted for the 
minimum presence threshold (MPT), i.e., the threshold allowing for identifying all the presence 
data points (TPR = 1) at the cost of a decrease in the absence accuracy (TNR) and an increase 
of false alarm rate (FPR). MPT is always lower than the optimal threshold. In this case, it takes 
a value of 0.13 (instead of 0.2), with the false alarm rate increasing from 0.13 to 0.30.  

Abundance estimation algorithm 

A basic abundance estimation algorithm based on multiple regression was developed using only 
data points with abundances higher than zero (n = 18), so that data points below the detection 
limit were excluded.  

Despite of the low size of the dataset, a significant regression (R2 = 0.79; F = 5.26; p<0.01) was 
found using seven reflectance bands as independent variables and abundances (log-10 
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transformed) as dependent variable. Regression parameters and performance measures are 
summarized in Table 10. 

Table 10 – Regression parameters and performance measures for the abundance estimation algorithm based on multiple 
regression. 

Input variable Coefficient t statistic 
Intercept 1.43 0.89 

Rw400 x 104 -0.05 -1.32 
Rw412 x 104 0.04 0.69 
Rw443 x 104 -0.11 -1.50 
Rw490 x 104 0.15 3.46** 
Rw620 x 104 -0.35 -3.02* 
Rw665 x 104 0.30 2.19 
Rw754 x 104 0.21 3.03* 

Performance measures 
R2 0.79 

MPE 0.00 
VAR 0.21 

RMSE 0.45 
RelRMSE 30.90 % 

 

According to the results, reflectances at 490 nm (p<0.01), 620 nm (p<0.05) and 754 nm (p<0.05) 
show a significant correlation with the abundance of A. minutum, so that it increases with 
increasing reflectances at 490 nm and 754 nm but with decreasing values at 754 nm.  

 
Figure 9 – Relationship between the abundance observed and predicted using the abundance estimation algorithm. 
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Figure 9 shows the relationship between the observed and predicted abundances. A clear linear 
trend is observed since the model provides a good fit without overestimating or 
underestimating the abundances (MPE = 0).  

4.3.1.2 Generation of map products 

Figure 10 summarizes the chain processing for the generation of a bloom probability map 
starting from a Sentinel-3 image.  

 
Figure 10 – Chain processing for generating a Alexandrium minutum bloom/no blooom map starting from a Sentinel-3 
image. 
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For a given non-masked pixel, the methodology consists of the next steps: 

1) Application of the SVM presence/absence model to obtain the presence probability for 
Alexandrium minutum (see section 4.2.3 for more details).  

2) Application of a threshold of 0.13 (MTP threshold) to classify the pixel as presence 
(presence probability higher or equal than the threshold) or absence (presence 
probability value lower than the threshold) 

3) Application of the abundance estimation algorithm based on multiple regression for 
predicting abundances of Alexandrium minutum. 

4) Identification of the pixel as bloom or no bloom. The pixel is classified as bloom only if 
it was classified as presence in step 2 and if the abundance is higher than a threshold of 
6 (abundance units are log-transformed, it corresponds with 106 cells/L). If not, it is 
identified as no bloom 

A different map product is obtained in each step: 1) presence probability map; 2) 
presence/absence map; 3) abundance map; and 4) bloom/no bloom map. Figure 11 shows an 
example with the different maps products derived from the Sentinel-3 image on.  

Note that the presence probability map (Figure 11a) only predict presence (abundances higher 
than 104 cells/L), so that high probability values do not imply the presence of a bloom. If fact, 
this map is an intermediate product aimed at defining presence areas (Figure 11b) where the 
abundance algorithm (Figure 11c) is expected to provide more reliable results. 

The bloom/no bloom product (Figure 11d) combines information from the SVM presence 
probability model and the abundance estimation algorithm, and hence it is supposed to provide 
a more reliable result.  

In any case, this species indicator was developed using a limited number of images and it should 
be applied with caution, since it is only valid for a limited range of environmental conditions 
occurring between May and August, 2018.   In a later stage of the project, the species indicator 
will be improved by a further validation and the integration of additional data in a more reliable 
higher level product.  
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Figure 11 – Results from Sentinel-3 species indicator for Alexandrium minutum on 4 July 2018. a) Presence probability map. 

b) Presence/Absence map. c) Abundance map (in log10[abundance(cells/L)]). d) Bloom/No bloom map. 

4.3.2 Sentinel-2 species indicator 

4.3.2.1 Algorithm development 

A simple algorithm for detecting blooms of Alexandrium minutum from high-resolution 
Sentinel-2 images based on detecting its characteristic spectral signature was developed.  

The algorithm is mainly based on reflectance spectra collected using TriOS field radiometer on 
17 July 2018, which were linked with Alexandrium minutum abundance data measured from 
water samples collected on the same stations.  

Then, 6 available reflectance spectra were grouped and averaged for three classes (Figure 12): 
bloom (abundances higher than 105 cells/L, 2 spectra), no bloom with clean waters (3 spectra) 
and no bloom with sediment-dominated waters (1 spectrum). 
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Figure 12 – Average field spectra for three classes defined using in situ data. 

Average field spectra for each class were first simulated for the Sentinel-2 bands using the 
corresponding spectral response function, assuming a Gaussian distribution around the band 
centres.  

Then, using a match-up database linking Polymer data and spectra collected during the field 
campaign conducted in the Ria de Vigo in July 2018, a linear relationship (R2 = 0.64) was found 
between Polymer normalized reflectances and in situ reflectances.  

Using this relationship, simulated Sentinel-2 spectra were finally adapted to Polymer 
normalized reflectances (Figure 13).  

The membership degree to each class can be computed for a given open water pixel in the 
same way as it is done with clusters centres derived from FCM algorithm. Hence, two kinds of 
products could be derived from Sentinel-2 images: bloom images showing the pixels belonging 
to the bloom class, or bloom probability images, showing the membership degree (between 0 
and 1) of the bloom class.  
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Figure 13 – Simulated Sentinel-2 Polymer reflectance spectra for three classes defined using field spectra and in situ data. 

4.3.2.2 Generation of maps products 

Figure 14 summarizes the chain processing for the generation of a bloom/no bloom or a bloom 
probability map starting from a Sentinel-2 image.  

Map product generation is based on the same procedure explained in section 3.3 to build FCM 
intermediate map products, but using the simulated spectral classes defined from field spectra 
(Figure 13) as clusters centres in order to produce grade maps and classification images. 

In this way, two kinds of maps products are generated: 

1) Bloom probability map: It is the grade map showing the membership degree to the class 
“bloom” for each pixel.  

2) Bloom/ No Bloom map: It is the classification image showing the class with the highest 
membership degree for each pixel.  
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Figure 14 – Chain processing for generating a Alexandrium minutum bloom/no bloom or bloom probability map starting 

from a Sentinel-2 image. 

Figure 15 shows an example of a bloom probability map on 17 July 2018. As compared to the 
Sentinel-3 species indicator, it provides a more accurate mapping of the interior of the rias. 
Since patches of Alexandrium minutum were mainly observed in areas near the coastline where 
data from Sentinel-3 could be less reliable, information is very relevant.  

Unfortunately, species indicator from Sentinel-2 has some disadvantages: images are noisier, 
making more difficult the development of algorithms, longer processing times and a poorer 
temporal coverage.  

Moreover, as Sentinel-3 species indicator, algorithms were developed using a limited number 
of images and it should be applied with caution since it could show a poor generalization 
capability.  

Sentinel-2 species indicator will be improved by a further validation and it could be also 
integrated in a higher-level product.  
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Figure 15 – Bloom probability map on 17 July 2018. 

5 Potential use of Galicia HABs products  

5.1 Temporal and spatial distribution of 
phytoplankton abundance 

Since chlorophyll is common to almost all phytoplanktonic groups, chla concentration is a good 
estimator of phytoplankton abundance. In fact, chla maps derived from MERIS images have 
already proven to be a useful tool for analysing phytoplankton distribution and detecting high 
biomass “patches” in the Galician rias and the adjacent continental shelf during a upwelling 
cycle in 2008 (Spyrakos et al., 2018).  

The spatial structure of the phytoplankton distribution revealed by chla maps is affected by 
regional characteristics, i.e., surface currents, freshwater inputs and specially the upwelling-
dowelling cycle, which depends on the prevailing winds in the platform area. A physical-
biological coupling is often observed, so that high chla concentrations coupled with low sea 
surface temperatures are associated with summer and spring upwelling events.  
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Figure 16 shows an example of the increase of chla concentration because of an upwelling 
event. On 29 August 2016 (Figure 16a), generally low concentrations were observed. A week 
later, on 5 September 2016 (Figure 16b), patches of high chlorophyll were observed mainly in 
the outer parts of the rias and in the adjacent continental shelf. Both images were processed 
using NNRB-Cl#2.  

 
Figure 16 – Chla maps derived from Sentinel-3 images using NNRB-Cl#2 algorithm. a) 29 August 2016. b) 5 September 2016. 

Chla maps may also provide useful information about HABs.  For instance, “high biomass” 
patches linked with upwelling events are usually related to the dominance of diatoms, including 
the potentially toxic Pseudo-nitzschia spp. Chla maps could also be useful for tracking blooms 
of Gymnodynium catenatum, a paralytic shellfish toxin (PST) producer that usually follows a 
northward progression from the Portuguese coast to the Galician rias, showing the highest 
abundances at the end of upwelling events.  

Despite the fact that data can only be obtained under cloud-free conditions, chla maps derived 
from Sentinel-3 images provide a good spatial resolution (300 m), allowing an accurate mapping 
of the interior the Rias Baixas and the adjacent continental shelf, and an excellent temporal 
coverage with a daily image available since December 2018 thanks to a two-satellite 
configuration (Sentinel 3a and b). As compared to field studies, with a limited spatial coverage 
and temporal frequency, chla maps have already proven to be able to record dynamic changes 
in chla distributions that can be missed by in situ monitoring.  
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5.2 HABs detection (higher-level products) 
Species indicators are mainly aimed to the detection of HABs, i.e. massive proliferations (or 
bloom) of specific toxic species from satellite images. As compared to direct observation 
methods based on sampling stations, species indicators are faster, cheaper and produce map 
outputs providing a more synoptic view of the study area (Blondeau-Patissier et al., 2014; 
Kudela et al., 2017). Sentinel-3 images provide a good spatial resolution and an excellent 
temporal coverage, with a daily image, although map product generation is limited by the cloud 
cover. However, as explained in section 4.1, results reliability is hindered by the limited spectral 
resolution of the images and specially by the complexity of the coastal waters.  

Considering the fact that HABs of specific toxic species are usually associated with certain 
environmental conditions, the combination of the species indicators with additional data, 
acquired on the previous and/or same day as the image, could lead to a significant 
improvement in the reliability and accuracy of the HABs detection.  

HABs higher-level products integrating map products (chla maps and species indicators) and 
auxiliary data are currently being developed within CoastObs in Task 3.8. Results will be 
presented in D3.8 (due to August 2019).  

The Pseudo-nitzschia spp. species indicator already provides reliable results allowing to 
distinguish between days clearly affected by blooms and “no bloom” days (Figure 17), but 
without providing information about toxicity (Pseudo-nitzschia spp. include both toxic and non-
toxic species). The higher-level product integrating upwelling indices and nutrient 
concentrations in the previous days is aimed to improving bloom detection and determining (to 
some extent) if the detected bloom is toxic, i.e. DA producer.  

 
Figure 17 – Pseudo-nitzschia spp. bloom probability maps derived from SVM model. a) 4 December 2017. b) 20 June 2016. 
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Regarding Alexandrium minutum, development of the bloom in summer 2018 was associated 
with anomalously high sea surface temperatures (SST), so that a higher-level product including 
SST data could significantly improve the accuracy of the species indicator, reducing false alarms.  

5.3 EO products for mussels farms 
INTECMAR monitoring program in Galicia is mainly focused on maintaining shellfish safety, 
making decisions about closure and/or reopening of the mussel production areas. This service 
is essential and irreplaceable, but it shows some limitations in terms of temporal and spatial 
coverage.  It is only based on weekly samplings in a limited number of stations, and thus 
important information could be missed considering that the Rias Baixas is a highly dynamic 
environment.  

Therefore, map products derived from satellite images could complement the existing 
monitoring program by providing information on a daily basis about the spatial distribution of 
phytoplankton abundance and/or HABs with a higher spatial resolution.   

In order to compare and/or combine the map products with information from the monitoring 
program or other sources, data can be extracted for a given sampling station (see section 2.3) 
or using spatial averages for specific areas (e.g. rias, mollusc production areas or rafts polygons). 
For instance, Figure 18 shows average chla values derived from maps processed using the 
NNRB-Cl#2 algorithm for the mollusc production areas defined by the Spanish government for 
two dates on July 2018.  

 
Figure 18 – Averaged chla values derived from NN chla maps for the mollusc production areas on 12 and 17 July 2018. 
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6 Phaeocystis North Sea: Environmental 
drivers 

6.1 Temperature 
Phaeocystis can survive in a broad range of temperatures and has even been found as an intact 
colony at -0.6°C during the winter period in Dutch coastal waters (Riegman and van Boekel, 
1996). In the case of the North Sea, P. globosa has a temperature range of -4°C to +20°C. Due 
to the broad temperature range, the concluding hypothesis was that the initiation of the 
blooms was not well correlated with the temperature of the water (Riegman and van Boekel, 
1996). Despite this, temperature still has an effect on the specific growth rate of Phaeocystis 
(Schoemann et al., 2005; Peperzak et al., 1998; Sun et al., 2018), although arguably, light is a 
more important factor influencing the timing of the blooms for Phaeocystis (Riegman and van 
Boekel, 1996). 

6.2 Light 
Compelling evidence gathered in literature suggests that although Phaeocystis blooms are not 
controlled by temperature, the amount of daily irradiance available for photosynthesis appears 
to control the timing of the blooms. Peperzak (2002) found that at surface irradiances of above 
38 E/m2/day, Phaeocystis cells were able to begin forming colonies. This was observed in 
enclosure experiments, where diatoms dominated the phytoplankton population with a daily 
irradiance of 60 Wh/m2/day (Peperzak, 2002). Such enclosure experiments reflect an artificial 
environment and may not reproduce in reality. In 1992, a delay in the timing of a Phaeocystis 
bloom in Marsdiep, Netherlands was attributed to the fact that in the days prior, the daily 
irradiances recorded in that area were less than approximately 38 E/m2/day (Brussaard, 1995).  
This also strengthens the hypothesis that the timing of the blooms is controlled by the amount 
of daily surface irradiance. High growth rates of more than 1 division per day are found when 
this daily irradiance threshold is exceeded (Jahnke et al., 1989). The growth rate, however, is 
not exponentially infinite as Phaeocystis is also affected by photoinhibition, which is reached at 
values of 91-180 E/m2/s (Blauw et al., 2010). Yet, light is not the only factor that plays an 
important role in the formation of a Phaeocystis bloom, as nutrients also play a crucial role in 
this process. 
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6.3 Nutrients 
Recent decrease in phosphate loading into coastal areas has led to an increasingly favourable 
environment for Phaeocystis (Verity et al., 2006; Lancelot et al., 2007).  For P. globosa, under 
light-saturated conditions, the ratio of the assimilation rate of nitrogen to phosphate was found 
to be 9.8, which is lower than the average ratio of 11.1 for other algae (Hecky and Kilham, 1988). 
The ability for Phaeocystis to outcompete other algae due to its relatively high nitrogen uptake 
rate also means that this species is less likely to proliferate in the event of excess in phosphate. 
Since, in the Southern North Sea, nutrient loading is positively correlated with salinity (Desmit 
et al., 2015), salinity presents itself as a potential indicator of the likelihood of a Phaeocystis 
bloom, as done in Blauw et al. (2010). This, of course, should be used under the assumption 
that the nitrogen to phosphor ratio of the total nutrient load from rivers exceeds the Redfield 
ratio requirement. While salinity can be used as an indicator of nutrient availability, salinity 
itself is an environmental parameter that also controls the growth rate of Phaeocystis. 

6.4 Salinity 
To examine the effect of salinity on Phaeocystis, Peperzak (2002) acquired seawater from the 
North Sea and Eastern Scheldt Estuary and diluted it to different levels of salinity, thus excluding 
the proportional change in nutrients typical of an estuarine environment. Results from 
Peperzak (2002) indicate a very strong correlation between salinity and the growth rate of 
Phaeocystis globosa (r2 = 0.95) under experimental conditions. At salinities of less than 15 psu, 
Phaeocystis cells started to die, while the maximum growth rate was achieved at 29 psu. 
Considering that the salinity varies between 26-32 psu along the Dutch coastal waters 
(Peperzak, 2002), Phaeocystis globosa in the Southern North Sea is at least considered to be 
both euryhaline and eurythermal, much like the rest of the other species of Phaeocystis 
(Schoemann et al., 2005). 

6.5 Phenological link with diatoms 
As mentioned in the introduction, the initiation of a Phaeocystis bloom tends to coincide with 
the depletion of silica. This is in part due to the silica limitation caused by diatoms uptake, 
resulting in a slowing down of growth rate and the ability for Phaeocystis to be able to 
outcompete the diatoms in such an event (Peperzak, 2002). This population dynamic has also 
been observed to occur in a 51-year model simulation of North Sea hydrodynamics, resulting 
in a clear distinction between the diatom peak followed by the Phaeocystis bloom, especially in 
in Regions of Freshwater Influence (ROFI), which includes the Dutch coastal areas (van Leeuwen 
et al., 2015). In the Belgian Coastal Zone (BCZ), this diatom-Phaeocystis succession has been 
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observed to occur every year between 1989-2003, though the magnitude of the interannual 
variability fluctuates depending on other environmental factors such as nutrient loading from 
the Scheldt (Gypens et al., 2007; Breton et al., 2006).  

 
Figure 19 – Phytoplankton dynamics across a 51-year average in the Region of Freshwater Influence (ROFI) (taken from van 
Leeuwen et al., 2015). 

Although the diatom-Phaeocystis succession is not an environmental variable, this intrinsic link 
with the diatom population dynamic allows for preliminary qualitative prediction of a bloom 
occurrence.  

In summary, an assessment of the main environmental variables affecting Phaeocystis growth 
rates and the timing of a bloom highly suggests that light is the most important factor in both 
the initiation of a Phaeocystis bloom and the growth rates of the species. Although temperature 
is commonly an important factor driving phytoplankton growth rates, the eurythermal 
Phaeocystis can tolerate a wide range of temperatures, thus, this factor more likely dictates a 
range of environments that this phytoplankton group can survive in, rather than being an 
influential factor contributing to variability in growth rates. From the literature review, 
Phaeocystis is known to have a strong correlation with the salinity of the water column, with an 
optimal salinity of approximately 29 psu. Salinity thus presents itself as an alternative indicator 
of the likelihood of a Phaeocystis bloom. In addition, Phaeocystis has the ability to assimilate 
DIN better than the average phytoplankton group, making it a competitive species in nitrogen 
replete environments such as the Southern North Sea, where the Rhine river brings in a much 
higher load of nitrogen than phosphor into the North Sea. Lastly, knowledge of the repeatedly 
occurring diatom-Phaeocystis succession is able to contribute to a qualitative prediction of a 
bloom event occurring. In the next chapter, the existing algorithms available for satellite 
detection of Phaeocystis are examined. 
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7 A review of existing algorithms for 
Phaeocystis detection and future 
research 

7.1 Introduction 
While it has been possible to detect and estimate the abundance and productivity of 
phytoplankton in both the open ocean and coastal zones using satellite imagery (see Eleveld et 
al., 2007; Ma et al., 2014), distinguishing phytoplankton groups in satellite-based observations 
is notoriously difficult due to the influence of other algal pigments on the reflectance spectrum 
(Blondeau-Patissier et al., 2014). In fact, the total absorption coefficient of seawater at at a 
particular wavelength λ can be summarized as a function of the absorption of water aw, 
phytoplankton and non-algal particles apart and coloured-dissolved organic matter aCDOM 
(Babin et al., 2003), as shown in the following equation. 

𝑎𝑎𝑡𝑡(𝜆𝜆) = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝜆𝜆) +  𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆) + 𝑎𝑎𝑤𝑤(𝜆𝜆) 

[Equation 1] 

Figure 20 shows an example of the absorption spectra for some of the phytoplankton groups. 
It becomes immediately clear why detecting specific HAB species can be complicated and 
difficult to do so. For example, it might not be so simple to distinguish the absorption 
coefficients of dinoflagellates from premnesiophytes, the group that Phaeocystis falls under, 
due to the similar absorption characteristics in the optical range (Figure 20). 

Since Phaeocystis is an ecological nuisance that affects the Dutch coastal zones every year 
during the spring bloom period, it has become increasingly important to identify the spatial and 
temporal extent of these blooms. Unfortunately, unlike coccolithophores, Phaeocystis lacks a 
strongly distinguishable absorption or scattering characteristic, making the detection of this 
specific phytoplankton group more challenging. In this chapter, we review the reflectance 
characteristics of Phaeocystis and assess some of the existing algorithms available for the 
identification and/or quantification of Phaeocystis in the Southern North Sea.  
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Figure 20 – Absorption feature of different phytoplankton groups (taken from Ocean Optics Web Book [Accessed: 
21/02/2019]. 

7.2 Estimating the abundance of P. globosa using the 
467nm wavelength 
Pure strains of two diatom species, Thalassiosira rotula and Ditylum brightwellii, and a strain of 
Phaeocystis globosa isolated from the BCZ were grown and cultured under two different light 
intensities by Astoreca et al. (2009). An optical characteristic of P. globosa was identified at 
467nm, where absorption was higher than that of diatoms due to the absorption of the C3 
chlorophyll pigment at that range.  

Based on this information, Astoreca et al. proposed the utilization of this specific wavelength 
for the detection of Phaeocystis, therefore, quantifying the absorption of chlorophyll C3 (ac3) in 
the following equation: 

𝑎𝑎𝑐𝑐3(𝜆𝜆𝑐𝑐3) = 𝑎𝑎𝑡𝑡(𝜆𝜆𝑐𝑐3) − 𝑎𝑎𝑡𝑡(𝜆𝜆1)[1−𝑤𝑤] ∗ 𝑎𝑎𝑡𝑡(𝜆𝜆2)𝑤𝑤 

[Equation 2] 

Where w = 𝜆𝜆𝑐𝑐3−𝜆𝜆1
𝜆𝜆2−𝜆𝜆1

, and λ1 and λ2 are 450 nm and 480 nm respectively. 

λ1 and λ2 represent two blue bands on either side of the chlorophyll C3 absorption bands, 
forming an exponential interpolation. To apply the algorithm onto water-leaving radiance, 
substitution of the equation results in the following: 

𝑎𝑎𝑐𝑐3(𝜆𝜆𝑐𝑐3) = �
1

𝜌𝜌𝑤𝑤(𝜆𝜆𝑐𝑐3) −
1

𝜌𝜌𝑤𝑤(𝜆𝜆1)(1−𝑤𝑤) ∗
1

𝜌𝜌𝑤𝑤(𝜆𝜆2)𝑤𝑤
� ∗ 𝑎𝑎𝑤𝑤(𝜆𝜆𝑁𝑁𝑁𝑁𝑁𝑁) ∗ 𝜌𝜌𝑤𝑤(𝜆𝜆𝑁𝑁𝑁𝑁𝑁𝑁) 

[Equation 3] 

Where λNIR = 700 nm and aw(700nm) = 0.57 m-1 
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Therefore, based on the absorption feature at 467nm, four bands at 450nm, 467nm, 480nm 
and 700 nm are used in this algorithm for the detection of Phaeocystis. This algorithm can be 
applied to hyperspectral remote sensing instruments such as the TriOS RAMSES, WISP-3 or 
WISPstation. 

A reasonably good correlation between chlorophyll c3 concentrations derived from at and field 
chlorophyll C3 concentrations was found (r2 = 0.72, p-value < 0.0001), while a high regression 
coefficient was found (r2 = 0.94, p-value < 0.0001) between chlorophyll c3 concentrations 
derived from at and field Phaeocystis cell numbers. When applying the algorithm onto water-
leaving radiance, however, the regression coefficient is then calculated to be 0.56 and 0.57 for 
regressing chlorophyll C3 concentrations derived from [Equation 2] against field chlorophyll C3 
concentrations and field Phaeocystis cell numbers respectively.  

One major shortcoming of using this algorithm is that although it may be applied to in-situ 
hyperspectral remote sensing instruments, it cannot be applied to past Envisat-MERIS or 
current Sentinel-3 imagery. In Envisat-MERIS, there are no bands covering the 467nm range, 
nor do they have the bandwidth required to reach it. Furthermore, diatoms have an absorption 
feature at 465nm (Astoreca et al., 2009), causing further complications if the spectral resolution 
is not high enough. The Sentinel-3 OLCI instrument inherits the bands from Envisat-MERIS. 
Despite the addition of other bands, these still do not sufficiently cover the 4 bands required, 
and do not have a narrow enough bandwidth to exclude the influence of other absorption 
features. Therefore, this algorithm is unsuitable for applying onto satellite imagery in order to 
have a synoptic view of the spatio-temporal extent of a Phaeocystis bloom. In the next section, 
methods for Phaeocystis detection involving satellite imagery will be reviewed to explore the 
feasibility of using such methods that do not involve wavelength-specific algorithms. 

7.3 Alternative algorithms for Phaeocystis detection  
A shortcoming of Astoreca et al.’s method (2009) is the lack of the 467nm band in dedicated 
ocean colour sensors such as MERIS or Sentinel-3. One way of circumventing this issue is to use 
multispectral specific algorithms such as that proposed by Lubac et al. (2008), which focuses 
on using the 442 nm, 490nm and 510nm bands for the detection of Phaeocystis. By using a 
band ratio of remote sensing reflectance Rrs(490nm)/Rrs(510nm) and Rrs(442.5nm)/Rrs(490nm), 
regressing the first band ratio against the second band ratio respectively results in a significantly 
different linear fit between P. globosa and diatoms (Lubac et al., 2008). A sensitivity analysis 
performed on the ratios suggests that the use of this method is reliable regardless of the bloom 
intensity, however, the presence of Coloured Dissolved Organic Matter (CDOM) presents a 
complicating factor as the behaviour of these ratios are more influenced by the composition of 
phytoplankton instead (Lubac et al., 2008). This could be a potential issue if the method was 
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applied onto the Southern North Sea, where there is a high flux of CDOM from the rivers Seine, 
Scheldt, Meuse and Rhine (Kurekin et al., 2014). This method, therefore, presents a possibility 
for use within multispectral images including SeaWIFS, Envisat MERIS and Sentinel-3, provided 
the regions being assessed are dominated by P. globosa during the period of observation. 

Wavelength or band-dependent methods, while offering a relatively straightforward method 
of quantifying or detecting Phaeocystis, can present a multitude of problems associated with 
the inherent optical properties of the water and the lack of sufficient spectral resolution. 
Classification methods provide an alternative to those methods, such as the one developed by 
Miller et al. (2006), constituting a HAB classifier that was trained on large datasets including 
inherent optical properties (i.e. absorption, backscattering) and manual labelling of HAB pixels. 
Building upon that classifier, Kurekin et al. (2014) further developed the method for the specific 
identification of P. globosa and Karenia mikimotoi, both HAB species, using a Linear 
Discriminant Analysis (LDA). The results of the classifier included a successful classification of 
more than 88% of pixels for both species, along with the potential to linearly transform the 
components of the (LDA) for the estimation of cell abundances of each species. One advantage 
of this method is that it does not require the calculation of chlorophyll-a, allowing for greater 
accuracy as species like P. globosa do not have a linear relationship with that parameter. 
However, it requires manual labelling of HAB pixels, in addition to a large amount of training 
datasets required in order for the classifier to have a maximum probability of correctly 
classifying each pixel. 

In retrospect, the main issue is that Phaeocystis, or its Southern North Sea type P. globosa, can 
be incredibly difficult to detect or quantify using optical methods. This is due to the fact that 
chlorophyll-a concentrations are not always related to the abundance of this species, along with 
the presence of the chlorophyll c3 pigment and other carotenoids that can influence the 
reflectance spectra due to their varying absorption characteristics. Classifier methods like 
Kurekin et al.’s (2014) or Miller et al.’s (2006) offer an alternate method for the detection of 
Phaeocystis blooms but come with laborious prerequisites before the classifier can be deemed 
successful. In the next chapter, we explore the available data for various environmental 
parameters considered important for the growth of Phaeocystis and attempt to create a model 
that can successfully detect or quantify P. globosa in the Dutch coastal zone. 
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8 Development and testing of a 
Phaeocystis detection indicator 

8.1 Introduction 
In Chapter 6, we reviewed the environmental parameters that would typically affect the growth 
rate and bloom dynamics of Phaeocystis. Based on those parameters, a multiple-regression 
model was developed and applied to satellite imagery in order to capture the spatial evolution 
of a Phaeocystis bloom in the Southern North Sea. An analysis of the available data revealed a 
strong correlation a combination of irradiance history, distance from coast and salinity levels. 
Although the model was calibrated using data from the Dutch coast of the North Sea, it should 
not be used as a quantification model for Phaeocystis abundance, but rather, an indicator of 
the likelihood of occurrence during a particular day of the year. In addition, the model shows 
good agreement with an actual recorded occurrence of a Phaeocystis bloom in 2008 (Peperzak 
and Poelman, 2008). 

8.2 Methodology 
8.2.1 Algorithm development 
Given the importance of salinity, irradiance and nutrients affecting the growth rate of 
Phaeocystis, a simple classification algorithm was created in order to try to capture the spatial 
extent of Phaeocystis bloom occurrence. In-situ Phaeocystis cell abundance and salinity data 
from the Rijkswaterstaat were used (https://www.informatiehuismarien.nl), while downwelling 
shortwave radiation, i.e. solar surface irradiance, was taken from the Surface Solar Radiation 
Data Set – Heliosat (SARAH) using measurements taken from Meteosat Visible Infra-Red Imager 
(MVIRI).  

For modelling purposes, daily average salinity levels of the North Sea were taken from 
Copernicus Marine Environment Monitoring Service (CMEMS) using the Atlantic-European 
North West shelf reanalysis based upon the Forecasting Ocean Assimilation Model 7km Atlantic 
Margin Model (FOAM AMM7). Although the model was calibrated to in-situ surface salinity 
values, since high spatio-temporal resolution of measured salinity values are not available, only 
surface salinity values from the FOAM AMM7 model were used in the final model output for 
detecting Phaeocystis blooms. In a preliminary analysis of the influence of salinity on 
Phaeocystis, it was found that there was not a particularly strong relationship present between 
the data. Instead, by creating a parameter that takes into account the maximum threshold value 

https://www.informatiehuismarien.nl/


  
 
 

 

 63 
  

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 776348 

for Phaeocystis abundance and the optimal value for Phaeocystis growth, this allowed for a 
better constrain of the relationship between salinity and Phaeocystis. In earlier tests of the 
model without any transformation on the data, the use of salinity alone resulted in no 
contribution to improving the correlation between model result and measured data, hence the 
need to explore alternative transformations of the parameter since salinity was described by 
Peperzak (2002) to be a very important influencing factor in Phaeocystis growth. This is 
described in the following equation: 

e
SalM−Salmeas
SalM−Salopt  

[Equation 4] 

Daily surface irradiance was also taken from SARAH and the irradiance history was calculated 
by averaging a certain number of days prior to the date of analysis. Exact day, 3-, 5-, 10- and 
14-day averages were made in order to determine the most appropriate amount of irradiance 
history to use as input for the model.  Distance from coast was calculated by performing a 
proximity analysis of the North Sea basin with respect to the coast, thus generating a map 
containing pixel values representing the distance to the nearest coastal pixel in kilometres 
(Figure 21). 

 

Figure 21 – Map of distance to the nearest coast generated using proximity analysis. 
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[Equation 5] 

Table 11 –Table of parameters with set values and parameter description. 

Model 
Parameters 

Set value Term description 

Dc Pixel-basis Distance from coast (km) 

SalM 35 
Maximum threshold value for 
Phaeocystis growth rate. Value set at 
35psu based on Peperzak (2002) 

Salmeas Pixel-basis Measured salinity value 

Salopt 29 
Optimal salinity value for Phaeocystis 
growth rate. Value set at 29psu based 
on Peperzak (2002) 

Irr Pixel-basis 
Downwelling shortwave radiation 
(W/m2) 

Mp 
Based on month of the year, 
generated using [] 

Parameter describing the likelihood 
of a bloom occurrence based on the 
average Phaeocystis cell abundance 
based on the month 

 

A multiple regression model was developed, and each parameter was assigned a constant value 
that was calibrated according to the in-situ measured data (a, b, c, d in Equation 5). 
Furthermore, some of the parameters have been parameterized with threshold values to 
further constrain the model result. 

A simple parameter describing the likelihood of bloom occurrence for each month was 
calculated by creating a 5-order polynomial based on the month number and the percentage 
of blooms occurring in the dataset. Samples are classified as blooms if Phaeocystis cell 
abundance exceeds more than 80000 cells per litre. This was performed in order to capture the 
approximate behaviour of bloom occurrence throughout the year, although arguably, relatively 
less intense blooms may still occur with less than 80000 cells per litre.  
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The equation is represented in the following: 

Mp = −0.0002x5 + 0.0077x4 − 0.0852x3 + 0.3812x2 − 0.563x + 0.5233 

[Equation 6] 

8.3 Results & Discussion 
Table 12 – Statistical information about the relationship between various environmental 
parameters and Phaeocystis abundance. 

Parameter vs Phaeocystis abundance Statistical information 

Salinity r2 = -0.212, p-value = 0.031 

Exponent-transformed salinity r2 = 0.214, p-value = 0.030 

5-day average irradiance r2 = 0.261, p-value = 0.0152 

Distance from coast r2 = -0.1369, p-value = 0.091 

 

 

Figure 22 – Plot of various environmental parameters versus Phaeocystis abundance. 

To test the effectiveness of the model, the model was applied onto datasets from the year 
2008, where a known intense Phaeocystis spring bloom occurred, as recorded by Peperzak and 
Poelman (2008) from stations BG8 and OS4 in the Scheldt Estuary. Figure 23 illustrates a simple 
classification map of the period prior, during and after the spring bloom recorded by Peperzak 
and Poelman. According to their results, a strong intense spring bloom began around the 
20/04/2008, peaked around 24/04/2008 and finally terminated approximately around 
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20/05/2008 onwards. In Figure 23, between 01/04 – 07/04, relatively large areas of the 
Southern North Sea had a low probability of Phaeocystis occurrence (shown in light green 
patches).  Risk of a medium chance of occurrence increased from 03/04 onwards in patches 
originating from the West. By 11/04, most of the pixels in the North Sea had a medium chance 
of occurrence. Of particular interest is the Dutch coastal region and the Wadden Zee, which 
remains largely at high risk of Phaeocystis occurrence throughout April. The spatial pattern of 
the potential high occurrence is not uniform throughout the period – for most of the Dutch 
coast and the Wadden Zee, high occurrence pixels are rare with the exception of the Voor Delta 
and Wadden Zee region in the early part of April. From around 9 April onwards, the red pixels 
begin expanding further off the coast, with patches of low probability pixels (green) begin 
shrinking. In Peperzak and Poelman’s study (2008), the highest peak was reached on the 24/04, 
although there was no measurement taken on 23/04, the largest spatial extent of the 
Phaeocystis bloom is reached on 23/04 in Figure 23. Although the intensity of the bloom cannot 
be inferred from the map, the bloom was recorded to terminate around 20/05 in the study. In 
In Figure 6, it can be observed that most of the North Sea now has a low probability of 
occurrence for Phaeocystis. In the case of the Scheldt Estuary, this is now reduced to a 
completely low probability of occurrence, with the exception of the northern part of the “Voor 
Delta”. 

Figure 23 – Classified maps covering the period before, during and after the spring bloom in 2008. 
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An important assumption in the model made is that the calibration against data taken from 
Dutch waters is representative of the Southern North Sea. This may not necessarily hold true, 
since different species of Phaeocystis exist and therefore, may have slightly different threshold 
values for each of the environmental parameters that might influence their growth. 
Furthermore, although temperature is a typically major factor influencing growth rates of 
phytoplankton, changes in temperature do not influence Phaeocystis growth rates. Since this 
was widely reported in scientific literature, it was not included in the study. However, a 
potential way of constraining the model is adding temperature as an environmental parameter 
for the purpose of having a threshold, since the North Sea ecotype does not bloom below 
temperatures of 8-9°C (Riegman and van Boekel, 1996). Additionally, although nutrients 
influence Phaeocystis growth rates strongly, this parameter is not included in the model. 
Despite nutrients being strongly related to the distance from coast (see de Vries et al., 1998), a 
usage of such a proxy may be inaccurate since nutrients could also be hydrodynamically 
influenced. Hydrodynamic influence is also not explored in the model, since the model result 
shows where the Phaeocystis bloom is expected to occur, but not where it could potentially 
occur when taking into account the hydrodynamics of the North Sea. Another way of improving 
the model is by altering the irradiance parameter such that it takes into account the 100 W/m2 

threshold for Phaeocystis bloom occurrence, similar to what was done for salinity. Currently, 
the model depends on salinity values from the FOAM AMM7 model. There remains the 
possibility of using remotely sensed salinity values as input for the model, therefore, this option 
should be explored in the future. Lastly, since salinity had the highest pixel resolution amongst 
the other input parameters, the pixel resolution of the model output is therefore approximately 
7km. This makes it difficult to estimate the likelihood of occurrence in smaller, dynamic areas 
such as the Eastern Scheldt (Oosterschelde). 

9 Conclusions 

9.1 Galicia HABs products 
HABs map products derived from colour images in Galicia are a useful tool for studying the 
spatial and temporal distribution of phytoplacton abundance and for the detection and 
monitoring of HABs of specific species, complementing the existing monitoring program based 
on field samplings.  

HABs map products will be validated using in situ data acquired between June and September 
2019, including data from the INTECMAR monitoring program and from the dedicated 
CoastObs field campaign that will be conducted in June 2019. Note that algorithms could also 
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be improved during the validation phase. Validation results will be included in a validation 
report (D3.10) due to October 2019.  

CoastObs products and services are being developed in accordance with a set of criteria 
established by the final users. In Galicia, final users include the Cooperative of Fishing Ship 
Owners of Vigo (ARVI) and the Regulatory Council of Mussel from Galicia. Therefore, all the 
products will be also evaluated and improved according to the user’s feedback. User evaluation 
will start in summer 2019 and will last to the end of the project in October 2020. Results will be 
included in the service assessment report (D5.4).    

9.2 Phaeocystis detection 
Following a literature review of the environmental parameters that potentially affects 
Phaeocystis growth rates, we present a newly developed algorithm for Phaeocystis bloom 
detection that takes into account salinity, irradiance and distance from coast. Thus far, the 
model created in this exercise works as a proof of concept by comparing it to data recorded 
from the Phaeocystis spring bloom in 2008. This should be rigorously tested for other years and 
with scientific literature in order to ensure the full applicability and workability of this algorithm. 
This new algorithm has potential in being able to provide alerts for coastal zones or shellfish 
farms when the risk of Phaeocystis blooms occurring is high, pending further testing. Future 
development will include the delineation of Phaeocystis blooms either based on a combination 
of the new algorithm and a chlorophyll-a product or a dedicated optical algorithm using 
relevant spectral information.  
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